
Under consideration for publication in Formal Aspects of Computing

Deciding Probabilistic Automata
Weak Bisimulation:

Theory and Practice
Luis Maŕıa Ferrer Fioriti1, Vahid Hashemi1,2, Holger Hermanns1, and Andrea Turrini3

1Department of Computer Science, Saarland University, Saarbrücken, Germany
2Max Planck Institute for Informatics, Saarbrücken, Germany
3State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract. Weak probabilistic bisimulation on probabilistic automata can be decided by an algorithm that
needs to check a polynomial number of linear programming problems encoding weak transitions. It is hence of
polynomial complexity. This paper discusses the specific complexity class of the weak probabilistic bisimula-
tion problem, and it considers several practical algorithms and Linear Programming problem transformations
that enable an efficient solution. We then discuss two different implementations of a probabilistic automata
weak probabilistic bisimulation minimizer, one of them employing SAT modulo linear arithmetic as the
solver technology. Empirical results demonstrate the effectiveness of the minimization approach on standard
benchmarks, also highlighting the benefits of compositional minimization.

Keywords: Complexity; Compositional Analysis; Concurrency; Efficiency; Linear Programming; Proba-
bilistic Automata; Satisfiability Modulo Theories; Weak Bisimulation

1. Introduction

Probability and nondeterminism are core aspects of concurrent systems. Probability for instance arises when
a system, performing an action, is able to switch to more than one state and the likelihood of each of these
states can be faithfully estimated. Probability can model both specific system choices (such as flipping a
coin, commonly used in randomized distributed algorithms) and general system properties (such as message
loss probabilities when sending a message over a wireless medium). Nondeterminism represents behaviours
that we can not or do not want to attach a precise (possibly probabilistic) interpretation to. This might
reflect the concurrent execution of several components at unknown (relative) speeds or behaviours we decide
to keep undetermined for simplifying the system model or allowing for different implementations.

Several models have been proposed in the literature to study formally systems where a combination of

Correspondence and offprint requests to: Andrea Turrini. e-mail: turrini@ios.ac.cn

2 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

probability and nondeterminism is considered: among others, there are Markov Decision Processes (MDP)
[Der70], Labelled Concurrent Markov Chains (LCMC), Alternating Probabilistic Models [Var85, Han91,
PLS00], and Probabilistic Automata (PA) [Seg95].

Probabilistic automata extend classical concurrency models in a simple yet conservative fashion. In
probabilistic automata, there is no global notion of time, and concurrent processes may perform probabilistic
experiments inside a transition. This is represented by transitions of the form s a−→ µ, where s is a state,
a is an action label, and µ is a probability measure on states. Labelled transition systems are instances
of this model family, obtained by restricting to Dirac measures (assigning full probability to single states).
Moreover, foundational concepts and results of standard concurrency theory are retained in full and extend
smoothly to the PA model. Since the PA model is akin to the MDP model, its fundamental beauty can be
paired with powerful model checking techniques, as implemented for instance in the PRISM tool [KNP11].
We refer the interested reader to [Seg06] for a survey on this and other models.

Given a real system, we can conceive several different probabilistic automata models to reflect its behav-
ior. Bisimulation relations provide a powerful tool to check whether two models describe essentially the same
system. They are then called bisimilar. The bisimilarity of two systems can be viewed in terms of a game
played between a challenger and a defender. In each step of the possibly infinite bisimulation game, the chal-
lenger chooses one automaton, makes a step, and the defender matches it with a step of the other automaton.
Depending on how we want to treat internal computations, this leads to strong and weak bisimulations: the
former requires that each single step of the challenger automaton is matched by an equally labelled single step
of the defender automaton, the latter allows the matching up to internal computation steps. On the other
hand, depending on how nondeterminism is resolved, probabilistic bisimulations can be varied by allowing
the defender to match the challenger’s step by a convex combination of enabled probabilistic transitions.
This results in a spectrum of four bisimulations: strong [Seg95, Han91, Var85], strong probabilistic [Seg95],
weak [PLS00, Seg95, EHZ10a, EHZ10b], and weak probabilistic [Seg95, EHZ10b, EHZ10a] bisimulations.
For a recent survey on behavioral equivalences and preorders, we refer the interested reader to [GHT14].

Besides comparing automata, bisimulation relations allow us to reduce the size of an automaton without
changing its properties (i.e., with respect to logic formulae satisfied by it). This is particularly useful to
alleviate the state explosion problem notoriously encountered in model checking. If the bisimulation is a
congruence with respect to the operators of a process calculus used to build up the automata out of smaller
ones, this can give rise to a compositional strategy to associate a small automaton model to a large system
without intermediate state space explosion. In several related settings, this strategy has been proven very
effective [CGM+96, HK00, KKZJ07, BHH+09, CHLS09]; it can speed up the overall model analysis or turn
a too large problem into a tractable one. Both, strong and weak bisimilarity are used in practice, with
weaker relations leading to greater reduction. However, this approach has thus far not been explored in the
context of MDPs or probabilistic automata. A striking reason is that until recently no effective decision
algorithm was at hand for weak probabilistic bisimilarity on PA. A polynomial time decision algorithm
has been proposed only recently [TH15], based on linear programming problems. That algorithm can be
embedded into a procedure to compress a given PA to its canonical minimal representative [EHS+13]. Since
weak probabilistic bisimilarity is a congruence for parallel composition and hiding operators on PAs (we
refer the interested reader to [Seg95, SL95] for more details), this paves the way for compositional strategies
to associate a small PA model to a large system without intermediate state space explosion.

The weak bisimilarity decision algorithm follows the standard partition refinement approach [KS90,
PT87, PLS00, CS02], and thereby induces a polynomial number of linear programming problems that can
be solved in polynomial time [Kar84, Kha79]. In this paper, we discuss the efficiency of solving the specific
LP problems from both theoretical and practical viewpoints. We first consider the theoretical efficiency of
solving the problem. We first look at rational PAs, i.e, PAs with only rational probability values, and study
the complexity of the decision problem together with several optimizations. This entails reformulating the
original LP problem [TH15] in order to simplify the construction of the dual LP problem [BT97] which
is smaller in size than the original. By using a state-of-the-art preconditioned conjugate gradient (PCG)
algorithm combined with a partial updating procedure [Ans99] that dual LP problem can be solved efficiently.
On the other hand, taking advantage of the small-sized dual LP problem, we give an upper bound on the
complexity of checking the feasibility of the original LP problem.

We also discuss how the efficiency of solving the decision problem can exploit the problem structure.
In practice one would usually opt for the notoriously efficient simplex method [Sha87] to solve the LP
problems. But a small modification of the underlying network [TH15] enables us to adapt the corresponding
LP problem into a variant of a minimum cost flow problem [AMO93] with flow proportional sets. This is

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 3

a special class of linear programming problems where the underlying network structure can be exploited,
in particular if it is sparse. Sparsity is indeed frequently observed in practical applications of probabilistic
automata. We therefore compare the simplex method with a very efficient state-of-the-art network simplex
algorithm [BF12] specialized for the minimum cost flow problem with additional side constraints. This is
known to outperform the simplex method [MSJ11, HK95, Cal02] when the number of nodes is an order of
magnitude larger than the number of side constraints.

We furthermore discuss different implementations of the decision algorithm, focusing on effective mini-
mization of PA with respect to weak probabilistic bisimilarity. One of the implementations exploits that the
problem at hand can be encoded into SAT modulo linear arithmetic. We report on extensive empirical inves-
tigations in the context of concurrent probabilistic systems. It turns out that minimization can be applied
effectively to standard PA benchmarks. Several techniques and heuristics are discussed to further reduce the
actual execution time of the algorithm, by showing how an accurate management of transition computation
and minimization helps in the reduction of large automata, in particular when they are the result of the
composition of several automata. The problem of efficiently deciding bisimilarities for PAs and MDPs is of
pivotal importance for compositional construction and minimization techniques for complex probabilistic
models. Once in place, these techniques can be rolled out to operations research, automated planning, and
decision support applications.

This article is a revised and extended version of [HHT13]. Implementation considerations, case studies,
and empirical results have not been published before.

Organization of the paper After the preliminaries in Section 2, we present in Section 3 the probabilistic
automata model and the weak probabilistic bisimulation. Then, in Section 4, we show how to compute
the weak probabilistic bisimulation and how to minimize an automaton. We devote Section 5 to the LP
problem construction and in Section 6 we focus on the efficiency of solving the LP problem. Section 7
presents implementation considerations together with several cases studies showing the effectiveness of the
minimization in particular for compositional analysis. Section 8 concludes the paper.

2. Mathematical Preliminaries

We now recall the basic mathematical preliminaries together with the notational conventions we adhere to
in this work.

Given two sets X and Y , denote by X] Y the disjoint union of X and Y .
A σ-field over a set X is a set F ⊆ 2X that includes X and is closed under complement and countable

union. A measurable space is a pair (X,F) where X is a set, also called the sample space, and F is a σ-field
over X. A measurable space (X,F) is called discrete if F = 2X . A measure over a measurable space (X,F)
is a function ρ : F → R≥0 such that, for each countable collection {Xi}i∈I of pairwise disjoint elements of F ,
ρ(∪i∈IXi) =

∑
i∈I ρ(Xi). A probability measure over a measurable space (X,F) is a measure ρ over (X,F)

such that ρ(X) = 1. A sub-probability measure over (X,F) is a measure over (X,F) such that ρ(X) ≤ 1.
A measure over a discrete measurable space (X, 2X) is called a discrete measure over X. The support of a
measure ρ over (X,F), denoted by Supp(µ), is the set {x ∈ X | µ(x) > 0 }. To simplify the notation, we
may write ρ(x) instead of ρ({x}), for x ∈ X.

Given a set X, denote by Disc(X) the set of discrete probability measures over X, and by SubDisc(X) the
set of discrete sub-probability measures over X. Given a discrete sub-probability measure ρ of SubDisc(X),
denote by ρ(⊥) the value 1 − ρ(X). For a discrete sub-probability measure ρ, we also write ρ = { (x, px) |
x ∈ X } where px is the measure ρ(x) of x. We call a discrete (sub-)probability measure ρ ∈ SubDisc(X) a
uniform measure on a set ∅ 6= Y ⊆ X, denoted by υY , if υY (y) = 1

|Y | for each y ∈ Y . We call a discrete

(sub-)probability measure a Dirac measure if it assigns measure 1 to exactly one object x ∈ X (denote this
measure by δx), that is, δx(y) = 1 if y = x, 0 otherwise. We also call Dirac a discrete sub-probability measure
that assigns measure 0 to all objects, and we denote it by δ⊥. Given ρ ∈ SubDisc(X), we denote by ρ\z
the z-conditional sub-probability measure such that ρ\z(x) = 0 if x = z and ρ\z(x) = ρ(x)

ρ(X\{z}) otherwise,

provided that ρ(X \ {z}) 6= 0. Given ρx ∈ SubDisc(X) and ρy ∈ SubDisc(Y), we denote by ρx × ρy the
sub-probability measure over X × Y defined by ρx × ρy(u, v) = ρx(u) · ρy(v) for each (u, v) ∈ X × Y . Given
a finite set I of indexes, a family {pi ∈ R>0}i∈I such that

∑
i∈I pi = 1, and a family {ρi ∈ SubDisc(X)}i∈I ,

4 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

s̄

r

y

g

0.3τ

0.1

0.6

1

τ 1a

1a

1a
1

τ

Figure 1. An example of PAs: the PA E

we say that ρ is the convex combination of {ρi}i∈I according to {pi}i∈I , denoted by
∑
i∈I pi · ρi, if, for each

x ∈ X, ρ(x) =
∑
i∈I pi · ρi(x).

Given a relation R ⊆ X × Y and x ∈ X, we denote by R(x) the set of elements of Y related to x, i.e.,
R(x) = { y ∈ Y | x R y } and we call R(x) the relation set of x.

Given an equivalence relation R on X, we denote by X/R the set of equivalence classes induced by R
and, for x ∈ X, by [x]R the class C ∈ X/R such that x ∈ C. We denote by I the identity relation, i.e., the
equivalence relation having [x]I = {x} for each x ∈ X.

The lifting [JL91] of a relation R ⊆ X × Y to a relation L(R) ⊆ Disc(X)×Disc(Y) is defined as follows:
for ρX ∈ Disc(X) and ρY ∈ Disc(Y), ρX L(R) ρY holds if there exists a weighting function ω : X×Y → [0, 1]
such that

• ω(x, y) > 0 implies x R y,

•
∑
y∈Y ω(x, y) = ρX(x), and

•
∑
x∈X ω(x, y) = ρY (y).

When R is an equivalence relation on a set X, ρ1 L(R) ρ2 holds if, for each C ∈ X/R, ρ1(C) = ρ2(C). In
particular, when R = I, ρ1 L(I) ρ2 holds if and only if ρ1 = ρ2. This property can be generalized to: if
R∩ Supp(ρ1)× Supp(ρ2) ⊆ I, then ρ1 L(R) ρ2 holds if and only if ρ1 = ρ2.

3. Probabilistic Automata

We now recall the main parts of the probabilistic automata framework [Seg95] we use in this paper, fol-
lowing the notation of [Seg06]. Note that the probabilistic automata we use here correspond to the simple
probabilistic automata of [Seg95].

Definition 1. A probabilistic automaton (PA) is a tuple A = (S, s̄,Σ,T), where S is a set of states, s̄ ∈ S
is the start state, Σ is the set of actions, and T ⊆ S × Σ×Disc(S) is a probabilistic transition relation.

The start state is also called the initial state.
The set Σ is divided in two disjoint sets H and E of internal (hidden) and external actions, respectively;

we let s, t, u, v, and their variants with indices range over S; a, b range over actions; and τ range over
internal actions.

We denote the generic elements of a probabilistic automaton A by S, s̄, Σ, H, E, T , and we propagate
primes and indices when necessary. Thus, for example, the probabilistic automaton A′i has states S′i, start
state s̄′i, actions Σ′i, internal actions H ′i, external actions E′i, and transition relation T ′i .

A transition tr = (s, a, µ) ∈ T , also denoted by s a−→ µ, is said to leave from state s, to be labelled by
a, and to lead to the measure µ. We denote by src(tr) the source state s, by act(tr) the action a, and by
trg(tr) the target measure µ, also denoted by µtr . We also say that s enables the action a, that the action
a is enabled from s, and that (s, a, µ) is enabled from s. We call a transition s a−→ µ internal or external
whenever a ∈ H or a ∈ E, respectively. Finally, we let T (a) = { tr ∈ T | act(tr) = a } be the set of
transitions with label a.

We say that a state s is a deadlock state if it enables no transitions, i.e., { tr ∈ T | src(tr) = s } = ∅.
Given a PA A, we denote by size(A) = max{|S|, |T |} the size of A. For the purposes of this paper, we

assume that A is finite, that is, both S and T are finite sets; moreover, we assume that each state of A can
be reached from s̄.

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 5

Example 1. An example of PA is the one shown in Figure 1: the set of states is S = {s̄, r, y, g, , , },
the start state is s̄, the set of actions Σ is the union of the set of external actions E = {a} and of the
set of internal actions H = {τ}, and the transition relation T contains the following transitions: s̄ τ−→ ρ
with ρ = {(r, 0.3), (y, 0.1), (g, 0.6)}, r a−→ δ , y a−→ δ , g a−→ δ , r τ−→ δs̄, and g τ−→ δs̄. , , and are
deadlock states and the size of E is size(E) = 7. �

3.1. Parallel Composition and Hiding

The following definition of parallel composition is an equivalent rewriting of the definition provided in [Seg06].

Definition 2. Given two PAs A1 and A2, we say that A1 and A2 are compatible if Σ1 ∩H2 = ∅ = H1 ∩Σ2.
Given two compatible PAs A1 and A2, the parallel composition of A1 and A2, denoted by A1 ‖ A2, is

the probabilistic automaton A = (S, s̄,Σ,T) where

• S = S1 × S2,

• s̄ = (s̄1, s̄2),

• Σ = E ∪H where E = E1 ∪ E2 and H = H1 ∪H2, and

• ((s1, s2), a, µ1 × µ2) ∈ T if and only if

– whenever a ∈ Σ1 ∩ Σ2, (s1, a, µ1) ∈ T1 and (s2, a, µ2) ∈ T2,

– whenever a ∈ Σ1 \ Σ2, (s1, a, µ1) ∈ T1 and µ2 = δs2 , and

– whenever a ∈ Σ2 \ Σ1, (s2, a, µ2) ∈ T2 and µ1 = δs1 .

For a ∈ Σ1 \Σ2, we denote by (s2, νa, δs2) the apparent internal transition corresponding to not performing
any transition from s2 in the combined transition, and similarly for a ∈ Σ2 \ Σ1.

For two compatible PAs A1 and A2 and their parallel composition A1 ‖ A2, we refer to A1 and A2 as the
component automata and to A1 ‖ A2 as the composed automaton.

Definition 3. Given a PA A and a set A of actions, the hiding of A in A, denoted by HideA(A), is the
automaton A′ that is the same as A except for E′ = E \A and H ′ = H ∪A.

Remark 1. In the above definition of parallel composition between PAs, we require that they are compatible,
i.e., the internal actions of one automaton can not be actions of the other automaton. This requirement seems
to be never fulfilled when we consider the internal action τ .

In the Process Algebra world, usually τ is the only internal action available, and it is used by every
process to denote an internal transition. In the Probabilistic Automata framework, τ is used as a symbol for
referring to internal actions, but usually it is not an actual action of the automaton. This means that, for
two automata A1 and A2, when we write (s1, τ, µ1) ∈ T1 and (s2, τ, µ2) ∈ T2, we are not requiring that the
label is the same for both transitions, but we are just referring to (s1, a1, µ1) ∈ T1 and (s2, a2, µ2) ∈ T2 for
some ai ∈ Hi, i ∈ {1, 2}.

The role of τ as symbol for internal actions and not as actual action becomes clear from the definition
of the hiding operator: for a given set A of actions to be hidden, instead of replacing each action in A with
τ as happens in process algebra world, we simply move the actions in A from E to H; the actual actions
remain unchanged.

Note that it is rather easy to transform two automata A1 and A2 that are not compatible into compatible
ones, by means of the action renaming operator [Seg95] that allows us to rename actions under the assumption
that external actions remain external and internal actions remain internal. So, we can just rename the internal
actions of both A1 and A2 with fresh (internal) actions and the resulting automata are then compatible.

3.2. Weak Transitions

In the setting of labelled transition systems, weak transitions are used to abstract from internal computations
[Mil89]. Intuitively, an internal weak transition is formed by an arbitrary long sequence of internal transitions,
and an external weak transition is formed by an external transition preceded and followed by arbitrary long
sequences of internal transitions. Note that the empty sequence is a valid arbitrary long sequence of internal

6 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

transitions. To lift this idea to the setting of probabilistic automata is a little intricate owed to the fact
that transitions branch into probability measures, and one thus has to work with tree-like objects instead of
sequences, as detailed in the sequel.

An execution fragment of a PA A is a finite or infinite sequence of alternating states and actions α =
s0a1s1a2s2 . . . starting from a state s0, also denoted by first(α), and, if the sequence is finite, ending with
a state denoted by last(α), such that for each i > 0 there exists a transition (si−1, ai, µi) ∈ T such that
µi(si) > 0. The length of α, denoted by |α|, is the number of occurrences of actions in α. If α is infinite, then
|α| = ∞. We denote by state(α, i) the state si and by action(α, j) the action aj , provided that 0 ≤ i ≤ |α|
and 0 < j ≤ |α|. Denote by frags(A) the set of execution fragments of A and by frags∗(A) the set of
finite execution fragments of A. An execution fragment α is a prefix of an execution fragment α′, denoted
by α 6 α′, if the sequence α is a prefix of the sequence α′. The trace of α, denoted by trace(α), is the
sub-sequence of external actions of α; we denote by ε the empty trace and we extend trace(·) to actions by
defining trace(a) = a if a ∈ E and trace(a) = ε if a ∈ H.

A scheduler for a PA A is a function σ : frags∗(A) → SubDisc(T) such that for each α ∈ frags∗(A),
σ(α) ∈ SubDisc({ tr ∈ T | src(tr) = last(α) }) or, equivalently, Supp(σ(α)) ⊆ { tr ∈ T | src(tr) = last(α) }.
Given a scheduler σ and a finite execution fragment α, the measure σ(α) describes how transitions are chosen
to move on from last(α). We call a scheduler determinate [CS02] if, for each α, α′ ∈ frags∗(A) such that
trace(α) = trace(α′) and last(α) = last(α′), then σ(α) = σ(α′). Essentially, a determinate scheduler bases
its choice only on the current state (as happens for history-independent schedulers, also known as stationary
policies in the context of Markov decision processes) and on the past external actions. In other words, a
determinate scheduler acts as a history-independent scheduler between one external action and the following
external action (or the choice of stopping).

A scheduler σ and a state s induce a probability measure µσ,s over execution fragments as follows. The
basic measurable events are the cones of finite execution fragments, where the cone of α, denoted by Cα, is
the set Cα = {α′ ∈ frags(A) | α 6 α′ }. The probability µσ,s of a cone Cα is defined recursively as follows:

µσ,s(Cα) =

1 if α = s,

0 if α = t for a state t 6= s,

µσ,s(Cα′) ·
∑

tr∈T(a) σ(α′)(tr) · µtr (t) if α = α′at.

Standard measure theoretical arguments ensure that µσ,s extends uniquely to the σ-field generated by cones.
We call the resulting measure µσ,s a probabilistic execution fragment of A and we say that it is generated
by σ from s. Given a finite execution fragment α, we define µσ,s(α) as µσ,s(α) = µσ,s(Cα) · σ(α)(⊥), where
σ(α)(⊥) is the probability of choosing no transitions after α has occurred.

Definition 4. Given a PA A, we say that there is a weak combined transition from s ∈ S to µ ∈ Disc(S)
labelled by a ∈ Σ, denoted by s a=⇒c µ, if there exists a scheduler σ such that the following holds for the
induced probabilistic execution fragment µσ,s:

1. µσ,s(frags∗(A)) = 1;

2. for each α ∈ frags∗(A), if µσ,s(α) > 0 then trace(α) = trace(a);

3. for each state t, µσ,s({α ∈ frags∗(A) | last(α) = t }) = µ(t).

In this case, we say that the weak combined transition s a=⇒c µ is induced by σ, that s a=⇒c µ exists in A,
and that A enables s a=⇒c µ.

Albeit the definition of weak combined transitions is admittedly intricate, it is just the obvious extension
of weak transitions on labelled transition systems to the setting with probabilities. We refer to Segala [Seg06]
for more details on weak combined transitions.

Example 2. Consider the automaton E depicted in Figure 1 and let ρ be ρ = {(r, 0.3), (y, 0.1), (g, 0.6)};
E enables the weak combined transition s̄ a=⇒c µ where µ = {(, 9

50), (, 8
50), (, 33

50)} via the scheduler σ

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 7

defined as follows:

σ(α) =

δ
s̄
τ−→ρ

if last(α) = s̄,

δ
r
τ−→δs̄

if α = s̄τr,

δ
r
a−→δ

if α 6= s̄τr and last(α) = r,

δ
y
a−→δ

if last(α) = y,

{(g τ−→ δs̄, 0.5), (g a−→ δ , 0.5)} if α = s̄τg,

δ
g
a−→δ

if α 6= s̄τg and last(α) = g,

δ⊥ otherwise.

We now verify the three properties that µσ,s̄ has to satisfy in order to justify s̄ a=⇒c µ: we start from the
third property, since the first two can be derived from it. Consider the state : it is reached with probability

µσ,s̄({α ∈ frags∗(E) | last(α) = })
= µσ,s̄({s̄τrτ s̄τra }) + µσ,s̄({s̄τgτ s̄τra })

+ µσ,s̄({α ∈ frags∗(E) | last(α) = } \ {s̄τrτ s̄τra , s̄τgτ s̄τra })
= µσ,s̄({s̄τrτ s̄τra }) + µσ,s̄({s̄τgτ s̄τra }) + 0

=

((((
(1) · 1 · 3

10

)
· 1 · 1

)
· 1 · 3

10

)
· 1 · 1

)
· 1 +

((((
(1) · 1 · 6

10

)
· 1

2
· 1
)
· 1 · 3

10

)
· 1 · 1

)
· 1

=
9

100
+

9

100
=

9

50
= µ(),

as required. The fact that

µσ,s̄({α ∈ frags∗(E) | last(α) = } \ {s̄τrτ s̄τra , s̄τgτ s̄τra }) = 0

is justified as follows: let α ∈ {β ∈ frags∗(E) | last(β) = } such that α /∈ {s̄τrτ s̄τra , s̄τgτ s̄τra }; if
first(α) = t 6= s̄, then by the recursive definition of µσ,s̄(Cα) we have that the base case is µσ,s̄(Ct) = 0,
hence µσ,s̄(Cα) = 0 as well. Suppose that first(α) = s̄ and consider the case α = s̄τra :

µσ,s̄(Cα) = µσ,s̄(Cs̄τra)

= µσ,s̄(Cs̄τr) ·
∑

tr∈T(a)

σ(s̄τr)(tr) · µtr ()

= µσ,s̄(Cs̄τr) · (σ(s̄τr)(r a−→ δ) · δ ()

+ σ(s̄τr)(y a−→ δ) · δ ()

+ σ(s̄τr)(g a−→ δ) · δ ())

= µσ,s̄(Cs̄τr) · (0 · 1 + 0 · 0 + 0 · 0) = 0.

Finally, the remaining finite execution fragments are such that α ∈ Cs̄τrτ s̄τrτs̄ ∪ Cs̄τrτ s̄τgτs̄ ∪ Cs̄τgτ s̄τrτs̄ ∪
Cs̄τgτ s̄τgτs̄. Consider the case α ∈ Cs̄τrτ s̄τrτs̄: by the recursive definition of µσ,s̄(Cα) we have that µσ,s̄(Cα) =
µσ,s̄(Cs̄τrτ s̄τrτs̄) · p for some value p ∈ R≥0; now, consider µσ,s̄(Cs̄τrτ s̄τrτs̄):

µσ,s̄(Cs̄τrτ s̄τrτs̄) = µσ,s̄(Cs̄τrτ s̄τr) ·
∑

tr∈T(τ)

σ(s̄τrτ s̄τr)(tr) · µtr (s̄)

= µσ,s̄(Cs̄τrτ s̄τr) · (σ(s̄τrτ s̄τr)(r τ−→ δs̄) · δs̄(s̄)
+ σ(s̄τrτ s̄τr)(s̄ τ−→ ρ) · ρ(s̄)

+ σ(s̄τrτ s̄τr)(g τ−→ δs̄) · δs̄(s̄))
= µσ,s̄(Cs̄τrτ s̄τr) · (0 · 1 + 0 · 0 + 0 · 1) = 0,

and similarly for the remaining cases α ∈ Cs̄τrτ s̄τgτs̄, α ∈ Cs̄τgτs̄τrτs̄, and α ∈ Cs̄τgτs̄τgτs̄. This completes
the justification of

µσ,s̄({α ∈ frags∗(E) | last(α) = } \ {s̄τrτ s̄τra , s̄τgτ s̄τra }) = 0.

8 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

A similar analysis shows that µσ,s̄({α ∈ frags∗(E) | last(α) = }) = µ() and µσ,s̄({α ∈ frags∗(E) |
last(α) = }) = µ(); for each remaining state s ∈ {s̄, r, y, g}, it is easy to verify that µσ,s̄({α ∈ frags∗(E) |
last(α) = s }) = 0. Regarding the first two properties of the definition of weak combined transition, we
have that µσ,s̄(frags∗(E)) = 1 follows directly from the third condition, as well as the second property by
considering the trace of the finite execution fragments occurring with non-zero probability. �

3.3. Weak Probabilistic Bisimulation

As said in the introduction, bisimulation relations constitute a powerful tool that allows us to verify whether
two models describe essentially the same real system. Moreover, they allow us to compute the minimal
automaton that is bisimilar to the given one [EHS+13]. We now recall the definition of weak probabilistic
bisimulation [Seg95, Seg06], that is the relation that allows us to abstract away from internal computations
while solving nondeterministic choices via convex combinations of the available transitions.

Definition 5. Given a PA A, an equivalence relation R on S is a weak probabilistic bisimulation if, for
each pair of states s, t ∈ S such that s R t, if s a−→ µs for some probability measure µs, then there exists a
probability measure µt such that t a=⇒c µt and µs L(R) µt.

In the following, we may refer to the condition “there exists µt such that t a=⇒c µt and µs L(R) µt” as
the step condition of the bisimulation. Specially, when the bisimulation is seen as a two-player game between
the two automata, the step condition is the condition on the weak transition (or weak step) performed by
the defender state t while matching the transition (or step) performed by the challenger state s.

To check whether two PAs A1 and A2 are weak probabilistic bisimilar, we can either adapt the above
definition to work with pairs of automata, or we can just consider the PA A = A1]A2 such that S = S1]S2,
s̄ = s̄1, H = H1 ∪ H2, E = E1 ∪ E2, T = T1] T2. Note that the choice s̄ = s̄1 is arbitrary, since it does
not affect the weak probabilistic bisimulation; similarly, we can ignore the requirement E ∩ H = ∅ since
actions are taken into account by the step condition: if the same action is external for A1 and internal for
A2, then A1 and A2 are not bisimilar since the external transition proposed by A1 can not be matched by
A2. Deciding whether two automata are bisimilar then reduces to compute the bisimulation R on A and to
check whether their start states are related by R, i.e., whether s̄1 R s̄2.

Definition 6. Given two PAs A1 and A2, we say that A1 and A2 are weakly probabilistic bisimilar if there
exists a weak probabilistic bisimulation R on S1] S2 such that s̄1 R s̄2. We denote the coarsest weak
probabilistic bisimulation by ≈, and call it weak probabilistic bisimilarity.

Weak probabilistic bisimilarity is an equivalence relation preserved by standard process algebraic com-
position operators on PA [PS04], such as parallel composition, action hiding, action renaming, and action
prefixing. As we will see in the next section, the complexity of deciding A1 ≈ A2 strictly depends on find-
ing the matching weak combined transition t a=⇒c µt for which determinate schedulers suffice (cf. [CS02,
Proposition 3]): in Section 5 we will show how to find them in polynomial time.

Remark 2. In this work we do not consider the weak bisimulation relation obtained by restricting to weak
transitions t a=⇒ µt induced by a deterministic (or Dirac) scheduler, i.e., by a scheduler σ such that for
each finite execution fragment α, either σ(α) = δtr for some tr ∈ T , or σ(α) = δ⊥. In fact, as shown in
[Den05], the resulting bisimulation is not transitive and this makes the usual compositional minimization
approach much more difficult to use. In such an approach a given automaton A0 is decomposed into multiple
sub-automata running in parallel, i.e., A0 = B1 ‖ B2 ‖ . . . ‖ Bn; then one component Bi at a time is replaced
by another component B′i that is bisimilar to but smaller than Bi. This gives rise to a sequence of automata
A0, A1, . . . , An such that for each 0 ≤ i < n, Ai and Ai+1 are bisimilar. If the bisimulation relation is
not transitive, then we can not derive that A0 and An are bisimilar. Instead, we have to provide a relation
witnessing the bisimilarity of A0 and An. Moreover, the construction we present in Section 5 to efficiently
find a weak combined transition is not easily extendable to weak (non-combined) transitions; see Remark 4
for a more detailed explanation.

Since in this paper we consider only weak combined transitions and weak probabilistic bisimulation and
bisimilarity, from now on we omit the adjectives “combined” and “probabilistic”, respectively.

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 9

Quotient(A)

1: R = {S};
2: (s, a, µs) = FindSplit(R);
3: while s 6= ⊥ do
4: R = Refine(R, (s, a, µs));
5: (s, a, µs) = FindSplit(R);
6: return R

FindSplit(R)

1: for all s ∈ S do
2: for all (s, a, µs) ∈ T do
3: for all t ∈ [s]R do
4: if there does not exist t a=⇒c µt

such that µs L(R) µt then
5: return (s, a, µs)
6: return (⊥, τ, δs̄)

Refine(R, (s, a, µs))
1: Cs = C¬s = ∅
2: for all t ∈ [s]R do
3: if there exists t a=⇒c µt such that µs L(R) µt then
4: Cs = Cs ∪ {t}
5: else
6: C¬s = C¬s ∪ {t}
7: return R \ {[s]R} ∪ {Cs, C¬s}

Figure 2. The decision procedure for the weak bisimilarity

4. Computing the Weak Bisimilarity for Minimizing Automata

In this section, we recast the decision procedure of [CS02] that decides whether two probabilistic automata
A1 and A2 are weak bisimilar by following the standard partition refinement approach [KS90, PT87, PLS00].

4.1. Deciding Weak Bisimilarity

We now study in detail the decision procedure for the weak bisimulation and then we analyze the complexity
of the algorithm.

4.1.1. Weak Bisimilarity Decision Algorithm

The decision algorithm for the weak bisimulation is sketched in Figure 2; the procedure Quotient
iteratively constructs the set S/≈, the set of equivalence classes of states S under ≈, starting with the
partitioning R = {S} and refining it until R satisfies the definition of weak bisimulation and thus the
resulting partitioning is the coarsest one, i.e., we compute the weak bisimilarity. In the following, we treat
R both as a set of partitions and as an equivalence relation without further mentioning.

The partitioning is refined by procedure Refine into a finer partitioning as long as there is a partition
containing two states that violate the bisimulation condition, which is checked for in procedure FindSplit.
Procedure Refine splits the partition [s]R into two new partitions Cs and C¬s according to the discriminating
information (s, a, µs) identified by FindSplit before. More precisely, Cs contains all states belonging to [s]R
that are able to match (s, a, µs), while C¬s contains the remaining states in [s]R that fail to match (s, a, µs).
It is clear that at the termination of the for loop at line 2 of Refine, both Cs and C¬s are not empty:
Cs obviously contains the state s while C¬s contains for sure the state t that caused FindSplit to return
(s, a, µs) at line 4. So far, the procedure essentially agrees with the DecideBisim(A1,A2) procedure of [CS02].

The real difference between the decision procedure we provide here and the one presented in [CS02]
however appears inside the procedure FindSplit, where we check directly the step condition by looking for
a weak transition t a=⇒c µt such that µs L(R) µt, instead of computing the information associated by a to s
and t, i.e., the set with respect to R of the probability measures reached from s (and t) via a weak transition
labelled by a.

Remark 3. In the context of model checking, the definition of bisimulation usually requires that two related

10 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

states are labelled with identical sets of atomic propositions. The decision procedure presented in Figure 2
can be easily adapted to such a definition by modifying line 1 of Quotient as follows: the initial partitioning
R is such that for each class C of R, s, s′ ∈ C if and only if s and s′ are labelled with identical sets of atomic
propositions.

4.1.2. Complexity of the Decision Algorithm

Assume we are given the PA A; let N = size(A). The for loop at line 1 of the procedure FindSplit
cycles at most N times. Now, consider the for loop at line 2: since T =

⋃
s∈S{ tr ∈ T | src(tr) = s } and

{ tr ∈ T | src(tr) = s } ∩ { tr ∈ T | src(tr) = t } = ∅ for each s, t ∈ S with s 6= t, it follows that the two
for loops together cycle at most N times. In the worst case (that occurs when [s]R = S and each state
t satisfies the step condition), the for loop at line 3 cycles at most N times as well. This means that the
existential check of t a=⇒c µt such that µs L(R) µt at line 4 is performed at most N2 times. Let W (N) be
the complexity of such check; it is immediate to see that FindSplit ∈ O(N2 ·W (N)).

The for loop in procedure Refine can be performed at most N times; this happens when [s]R = S. In
each loop, an instance of the existential check of t a=⇒c µt such that µs L(R) µt has to be computed, with
complexity W (N); the resulting complexity of Refine is therefore O(N ·W (N)).

The while loop in the procedure Quotient can be performed at most N times; this happens when
in each loop the procedure FindSplit returns (s, a, µs) where s 6= ⊥, that is, not every pair of states in
[s]R satisfies the step condition. Since in each loop the procedure Refine replaces such class [s]R with two
non-empty classes Cs and C¬s, after at most N loops every class contains a single state and the procedure
FindSplit returns (⊥, τ, δs̄) since each transition s a−→ µs is obviously matched by s itself. Since Refine has
complexity O(N ·W (N)) and FindSplit O(N2 ·W (N)), it follows that the overall complexity of Quotient
is O(N · (N2 ·W (N) +N ·W (N))) = O(N3 ·W (N)).

Proposition 1. Given two PAs A1 and A2, let S = S1] S2 and N = size(A1) + size(A2); given a state
t ∈ S, an action a ∈ Σ, the probability measures µs, µt ∈ Disc(S), and an equivalence relation R on S, let
W (N) be the complexity of checking the existence of t a=⇒c µt such that µs L(R) µt. Checking A1 ≈ A2

has complexity O(N3 ·W (N)).

Proof. Immediate by the previous analysis.

4.2. Minimization and Parallel Composition

In this section, we explain in detail the practical steps that lead from a PA A to the minimal automaton
M that is weak bisimilar to A, as formalized in [EHS+13, HK00, CGM+96]: the first step extracts the
reachable fragment A� of A, i.e., the states and the corresponding transitions that can be reached with
non-zero probability from the start state. (Note that by our assumptions on the automata we do not need
this initial step.) The second step generates the quotient automaton by computing the weak bisimilarity ≈.
Once ≈ is at hand, the quotient automaton [A�]≈ is extracted in a third step: it has as set of states the
set of the equivalences classes of ≈ and as the start state the class of s̄; the sets of internal and external
actions are the same as in A� while the transition relation contains only the transitions [s]≈

a−→ ρ such that
there exists s a−→ µ ∈ T� where ρ(C) =

∑
t∈C µ(t) for each C ∈ [S�]≈. The fourth step of the minimization

procedure removes from [A�]≈ the transitions that are redundant, i.e., the transitions that can be removed
from the automaton since they can be weakly matched by the remaining transitions; the fifth and final step
normalizes the internal transitions, i.e., each transition s τ−→ µ is replaced by s τ−→ µ\s. Note that the fourth
step ensures that there are no transitions s τ−→ δs since they are trivially redundant.

The correctness of the above construction is justified by the following properties of weak probabilistic
bimulation: let A be a set of actions and A, A′, A′′, and Ae be four PAs such that Ae is compatible with
both A and A. Then the following holds:

• ≈ is transitive [Seg95]: if A ≈ A′ and A′ ≈ A′′, then A ≈ A′′;
• ≈ is preserved by parallel composition [Seg95]: if A ≈ A′, then A ‖ Ae ≈ A′ ‖ Ae;
• ≈ is preserved by the hiding operator: if A ≈ A′, then HideA(A) ≈ HideA(A′);
• A ≈ A� [EHS+13];

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 11

• A ≈ [A]≈ [EHS+13];

• removing redundant transitions preserves weak bisimilarity [EHS+13]; and

• normalizing internal transitions preserves weak bisimilarity [EHS+13].

The main computational bottleneck of this overall minimization procedure applied to an automaton A
is the second step, the weak bisimulation computation, that we have already seen by Proposition 1 to be
O(N3 ·W (N)).

Therefore, this bottleneck has to be carefully considered, with respect to the size of the models to be
processed by it: when we want to minimize a large automaton that is the result of the parallel composition of
several smaller automata, according to the definition of parallel composition, the resulting state space is the
Cartesian product of the single state spaces. This means that the state space of the composed automaton
grows exponentially in the number of components, in particular when they are different instances of the
same system, leading quickly to prohibitively large automata. However, it is quite common to in this way
generate states and transitions that are actually useless since they are not reachable from the start state
of the composed automaton, in particular when the resulting transition has as label an internal action.
For instance, suppose that we have a transition s1

τ−→ µ1 ∈ T1. According to the definition of parallel
composition, for each s2 ∈ S2 we have to generate the transition (s1, s2) τ−→ µ1 × δs2 , even when (s1, s2)
can not be reached from (s̄1, s̄2). To alleviate the fast growth of the parallel composition it is advisable to
generate only the reachable fragment or adopt more advanced techniques [GSL96, KM00].

Furthermore, consider the two PAs A1 and A2 such that their only transitions are {s τ−→ δt, t
a−→ δt}

and {x a−→ δy, y
a−→ δy}, respectively: it is immediate to see that both automata are weak bisimilar to A3

whose only transition is v a−→ δv and that A1 ‖ A2 is weak bisimilar to A3 ‖ A3 whose only transition is
(v, v) a−→ δ(v,v). Such weak bisimilarity between A1 ‖ A2 and A3 ‖ A3 is not fortuitous but derives from
the fact that the weak bisimulation is preserved by the parallel composition. In fact, for any pair of com-
patible PAs A1 and A2, we have that A1 ‖ A2 ≈ [A1]≈ ‖ A2 ≈ [A1]≈ ‖ [A2]≈. The first bisimulation
is justified by taking A2 as context and the fact that A1 ≈ [A1]≈, and similarly for the second bisimu-
lation. The compatibility of the pair of automata we compose is ensured by the fact that an automaton
and its quotient have the same sets of actions. In general [A1]≈ ‖ [A2]≈ is not the minimal automaton
that is weak bisimilar to A1 ‖ A2: in fact, the presence of internal transitions may lead to symmetric
constructions that are identified and collapsed by computing the weak bisimulation. For instance, sup-

pose that we have the states s1 and s2 enabling the transitions s1
τ−→ δs′1 , s1

a−→ µ1, and s′1
b−→ µ′1 and

s2
τ−→ δs′2 , s2

a−→ µ2, and s′2
b−→ µ′2, respectively. In the parallel composition we obtain the four internal

transitions (s1, s2) τ−→ δ(s′1,s2), (s1, s2) τ−→ δ(s1,s′2), (s′1, s2) τ−→ δ(s′1,s′2), and (s1, s
′
2) τ−→ δ(s′1,s′2) and the two

external transitions (s1, s2) a−→ µ1 × µ2 and (s′1, s
′
2) b−→ µ′1 × µ′2. It is clear that the states (s′1, s2), (s1, s

′
2),

and (s′1, s
′
2) are weak bisimilar, so they can be collapsed. Applying the hiding operator after a parallel

composition increases this effect considerably.

5. Weak Transition Construction as a Linear Programming Problem

As discussed in the previous section, the main source of the worst case behaviour of the decision algorithms
[TH15, CS02] for PA weak probabilistic bisimulation is the recurring need to check for the existence of
the weak transition. This is solved with an exponential algorithm in [CS02] and a polynomial algorithm in
[TH15]. The latter approach takes inspiration from network flow problems: a weak transition t a=⇒c µt of a
PA A is described as an enriched flow problem in which the initial probability mass δt splits along internal
transitions, and precisely one external transition with label a 6= τ for every stream, in order to reach µt. The
enriched flow problem is then translated into a Linear Programming (LP) problem extended with balancing
constraints that encode the need to respect transition probability measure.

5.1. Network Construction

To describe the structure of the enriched LP problem, we first recall the definition of the network graph
corresponding to a weak transition.

12 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

Definition 7 (cf. [TH15, Sect. 5.2]). Given a PA A, a state t, an action a, a probability measure µ, and
an equivalence relation R on S, the network graph G(t, a, µ,R) = (V,E) relative to the weak transition
t a=⇒c µt is defined as follows. Given v ∈ S, a ∈ E, and tr ∈ T , let va, vtr , and vtra be three copies of v. For
a ∈ E, the set V of vertices is

V = {M,H} ∪ S ∪ Str ∪ Sa ∪ Str
a ∪ S/R

where

Str = { vtr | tr = v b−→ ρ ∈ T , b ∈ {a} ∪H },
Sa = { va | v ∈ S }, and

Str
a = { vtra | vtr ∈ Str }

and the set E of arcs is

E = {(M, t)} ∪ L1 ∪ La ∪ L2 ∪ LaR

where

L1 = { (v, vtr), (vtr , v′) | tr = v τ−→ ρ ∈ T , v′ ∈ Supp(ρ) },
La = { (v, vtra), (vtra , v

′
a) | tr = v a−→ ρ ∈ T , v′ ∈ Supp(ρ) },

L2 = { (va, v
tr
a), (vtra , v

′
a) | tr = v τ−→ ρ ∈ T , v′ ∈ Supp(ρ) }, and

LaR = { (va, C), (C,H) | C ∈ S/R, v ∈ C }.

For a ∈ H the definition is similar:

V = {M,H} ∪ S ∪ Str ∪ SR ∪ S/R

and

E = {(M, t)} ∪ L1 ∪ L⊥ ∪ LR,

where LR = { (v, C), (C,H) | C ∈ S/R, v ∈ C }.

We refer to the elements of S ∪ Sa as state nodes, of T = Str ∪ Str
a as transition nodes, and of S/R as class

nodes.

Example 3. Consider again the PA E in Figure 1 and suppose that we want to check whether there exists
a weak transition s̄ a=⇒c ρ such that ρ L(R) µ where µ = {(, 9

50), (, 8
50), (, 33

50)} and R = I. Note that
this implies that ρ = µ. Denote as usual the transitions of E as follows: tr0 = s̄ τ−→ {(r, 0.3), (y, 0.1), (g, 0.6)},
tr1 = r a−→ δ , tr2 = y a−→ δ , tr3 = g a−→ δ , tr4 = r τ−→ δs̄, and tr5 = g τ−→ δs̄. The network G(s̄, a, µ,R)
is shown in Figure 3, where we omit the state vertices , , and as well as the transition vertices rtr1 ,
ytr2 , and gtr3 since they are not involved in any arc of the network.

It is worthwhile to note that for a ∈ E, each path in the network graph from M to H has to pass through
a transition vertex vtra where act(tr) = a, i.e., rtr1

a , ytr2
a , or gtr3

a . This construction ensures that the external
action is performed with probability 1. �

5.2. LP Problem Construction

As pointed out in [TH15], the fact that the network admits a flow that respects the probability measure µt
does by itself not imply the existence of a corresponding weak transition, because the flow may not respect
probability ratios. To account for the latter, the network is converted into a linear programming problem for
which the feasibility is shown to be equivalent to the existence of the desired weak transition. The idea is to
convert the flow network into the canonical LP problem and then add the balancing constraints that force
the “flow” to split according to transition probability measures.

Definition 8 (cf. [TH15, Definition 7]). Given a PA A, a state t ∈ S, an action a ∈ Σ, a probability

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 13

M s̄ s̄tr0

r

y

g

rtr4

gtr5

rtr1
a

ytr2
a

gtr3
a

a

a

a

[]R

[]R

[]R

s̄a s̄tr0
a

ra

ya

ga

rtr4
a

gtr5
a

[r]R

[y]R

[g]R

[s]R

H

Figure 3. The network G(s̄, a, µ,R) of Example 3

measure µ ∈ Disc(S), and a binary relation R on S, for a ∈ E we define the LP problem LP(t, a, µ,R)
associated to the network graph (V,E) = G(t, a, µ,R) as follows.

max
∑

(u,v)∈E −fu,v
subject to
fu,v ≥ 0 for each (u, v) ∈ E
fM,t = 1
fC,H = µ(C) for each C ∈ S/R∑

(u,v)∈E fu,v −
∑

(v,w)∈E fv,w = 0 for each v ∈ V \ {M,H}
fvtr ,v′ − ρ(v′) · fv,vtr = 0 for each tr = v τ−→ ρ ∈ T and v′ ∈ Supp(ρ)
fvtra ,v′a − ρ(v′) · fva,vtra = 0 for each tr = v τ−→ ρ ∈ T and v′ ∈ Supp(ρ)
fvtra ,v′a − ρ(v′) · fv,vtra = 0 for each tr = v a−→ ρ ∈ T and v′ ∈ Supp(ρ)

When a ∈ H, the LP problem LP(t, a, µ,R) associated to G(t, a, µ,R) is defined as above without the
last two groups of constraints:

max
∑

(u,v)∈E −fu,v
subject to
fu,v ≥ 0 for each (u, v) ∈ E
fM,t = 1
fC,H = µ(C) for each C ∈ S/R∑

(u,v)∈E fu,v −
∑

(v,w)∈E fv,w = 0 for each v ∈ V \ {M,H}
fvtr ,v′ − ρ(v′) · fv,vtr = 0 for each tr = v τ−→ ρ ∈ T and v′ ∈ Supp(ρ)

Example 4. Consider again the automaton E from Example 1 (depicted in Figure 1) and a weak transition
s̄ a=⇒c ρ such that ρ L(R) µ where µ = {(, 9

50), (, 8
50), (, 33

50)} and R = I. As in Example 3, since
I is the identity relation, we have that ρ = µ. Denote as usual the transitions of E as follows: tr0 =
s̄ τ−→ {(r, 0.25), (y, 0.25), (g, 0.5)}, tr1 = r a−→ δ , tr2 = y a−→ δ , tr3 = g a−→ δ , tr4 = r τ−→ δs̄, and
tr5 = g τ−→ δs̄.

Besides the constraints for the non-negativity of the variables, the LP problem LP(s̄, a, µ,R) has the
following constraints:

• initial flow and challenging probabilities:

fM,s̄ = 1 f[]R,H = 9/50 f[]R,H = 8/50
f[]R,H = 33/50 f[s̄]R,H = 0 f[r]R,H = 0
f[y]R,H = 0 f[g]R,H = 0

• conservation of the flow for vertices in S:

fM,s̄ + frtr4 ,s̄ + fgtr5 ,s̄ − fs̄,s̄tr0 = 0 fs̄tr0 ,r − fr,rtr1a − fr,rtr4 = 0

fs̄tr0 ,y − fy,ytr2a = 0 fs̄tr0 ,g − fg,gtr3a − fg,gtr5 = 0

14 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

• conservation of the flow for vertices in Str :

fs̄,s̄tr0 − fs̄tr0 ,r − fs̄tr0 ,y − fs̄tr0 ,g = 0 fr,rtr4 − frtr4 ,s̄ = 0
fg,gtr5 − fgtr5 ,s̄ = 0

• conservation of the flow for vertices in Sa:

f
r
tr4
a ,s̄a

+ f
g
tr5
a ,s̄a

− f
s̄a,s̄

tr0
a
− fs̄a,[s̄]R = 0 f

r
tr1
a , a

− f
a,[]R = 0

f
s̄
tr0
a ,ra

− f
ra,r

tr4
a
− fra,[r]R = 0 f

y
tr2
a , a

− f
a,[]R = 0

f
s̄
tr0
a ,ya

− fya,[y]R = 0 f
g
tr3
a , a

− f
a,[]R = 0

f
s̄
tr0
a ,ga

− f
ga,g

tr5
a
− fga,[g]R = 0

• conservation of the flow for vertices in Str
a :

f
s̄a,s̄

tr0
a
− f

s̄
tr0
a ,ra

− f
s̄
tr0
a ,ya

− f
s̄
tr0
a ,ga

= 0 f
r,r

tr1
a
− f

r
tr1
a , a

= 0

f
ra,r

tr4
a
− f

r
tr4
a ,s̄a

= 0 f
y,y

tr2
a
− f

y
tr2
a , a

= 0

f
ga,g

tr5
a
− f

g
tr5
a ,s̄a

= 0 f
g,g

tr3
a
− f

g
tr3
a , a

= 0

• conservation of the flow for vertices in S/R:

fs̄a,[s̄]R − f[s̄]R,H = 0 f
a,[]R − f[]R,H = 0

fra,[r]R − f[r]R,H = 0 f
a,[]R − f[]R,H = 0

fya,[y]R − f[y]R,H = 0 f
a,[]R − f[]R,H = 0

fga,[g]R − f[g]R,H = 0

• balancing constraints for τ -transitions generating L1:

fs̄tr0 ,r − 0.3 · fs̄,s̄tr0 = 0 fs̄tr0 ,y − 0.1 · fs̄,s̄tr0 = 0
fs̄tr0 ,g − 0.6 · fs̄,s̄tr0 = 0 frtr4 ,s̄ − 1 · fr,rtr4 = 0
fgtr5 ,s̄ − 1 · fg,gtr5 = 0

• balancing constraints for a-transitions generating La:

f
r
tr1
a , a

− 1 · f
r,r

tr1
a

= 0 f
y
tr2
a , a

− 1 · f
y,y

tr2
a

= 0

f
g
tr3
a , a

− 1 · f
g,g

tr3
a

= 0

• balancing constraints for τ -transitions generating L2:

f
s̄
tr0
a ,ra

− 0.3 · f
s̄a,s̄

tr0
a

= 0 f
s̄
tr0
a ,ya

− 0.1 · f
s̄a,s̄

tr0
a

= 0

f
s̄
tr0
a ,ga

− 0.6 · f
s̄a,s̄

tr0
a

= 0 f
r
tr4
a ,s̄a

− 1 · f
ra,r

tr4
a

= 0

f
g
tr5
a ,s̄a

− 1 · f
ga,g

tr5
a

= 0

A solution that maximizes the objective function sets all variables to the value 0 except for the following
variables:

fM,s̄ = 50/50 fs̄,s̄tr0 = 80/50 fs̄tr0 ,r = 24/50
fs̄tr0 ,y = 8/50 fs̄tr0 ,g = 48/50 f

r,r
tr1
a

= 9/50

fr,rtr4 = 15/50 f
y,y

tr2
a

= 8/50 f
g,g

tr3
a

= 33/50

fg,gtr5 = 15/50 frtr4 ,s̄ = 15/50 fgtr5 ,s̄ = 15/50
f
r
tr1
a , a

= 9/50 f
y
tr2
a , a

= 8/50 f
g
tr3
a , a

= 33/50

f
a,[]R = 9/50 f

a,[]R = 8/50 f
a,[]R = 33/50

f[]R,H = 9/50 f[]R,H = 8/50 f[]R,H = 33/50

It is worthwhile to note the value 80/50 for the variable fs̄,s̄tr0 : this is caused by the fact that the arc (s̄, s̄tr0)
is part of a cycle and its flow value is greater than 1, confirming that 1, the maximum probability, in general
is not a proper value for arc capacities, as discussed in [TH15]. �

In the LP problem described in Definition 8, the objective function maximizes the total sum of negated
flow routed along the arcs of the network. In fact, the total flow is described as the sum of negated flow
variables which are positive themselves. This prevents routing large amounts of flow over disconnected
components of the network or over cycles that can be ignored. Furthermore, in the LP problem, there are

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 15

two different sets of constraints. The first set is the ordinary set of flow conservation constraints which
require the total flow incoming and outgoing a node of the network to be equal. The second set is the set of
balancing constraints that require the entering amount of flow to a transition node to be distributed based
on probabilities assigned to the outgoing arcs.

It is easy to observe that the LP(t, a, µ,R) LP problem has size that is quadratic in the size N = size(A):
the number of variables is at most 3N2 + 5N + 1 while the number of constraints is at most 6N2 + 11N + 2.
Moreover, it is also worthwhile to spell out the number of transition, state, and class nodes of the network
G(t, a, µ,R): there are at most 2|T | transition nodes, at most 2|S| state nodes, and at most |S| class nodes.

The equivalence of the LP problem and the weak transition is formalized by Theorem 9 and Corol-
lary 12(1) of [TH15]:

Proposition 2. A weak transition t a=⇒c µt such that µ L(R) µt exists if and only if the LP problem
LP(t, a, µ,R) has a feasible solution.

Remark 4. The LP problem construction proposed in Definition 8 is not easily extendable to weak non-
combined transitions induced by a Dirac scheduler. In fact, in order to obtain for such setting a result
equivalent to Proposition 2, we should enforce that the flow leaving the nodes v and va is not split among
several outgoing arcs, but it is routed completely to a single arc. To obtain such a situation, we should
replace, for each v ∈ S ∪ Sa, the flow conservation constraint in Definition 8∑

(u,v)∈E fu,v −
∑

(v,w)∈E fv,w = 0 for each v ∈ V \ {M,H}

by the following set of constraints:∑
(u,v)∈E fu,v −

∑
(v,w)∈E αv,wfv,w = 0 for each v ∈ V \ {M,H}∑

(v,w)∈E αv,w = 1 for each v ∈ V \ {M,H}
αv,w ∈ {0, 1} for each (v, w) ∈ E

The latter ensures that the flow is sent through a single outgoing arc in its entirety. This change implies
that the resulting problem is no longer a Linear Programming problem but a Mixed Integer Nonlinear
Programming problem (MINLP), known to belong to the class of NP-complete problems [Sch03]. While it is
rather easy to show that the problem of finding a weak transition induced by a Dirac scheduler is equivalent
to the above MINLP problem (the proof is essentially the same of the one of Proposition 2, see [TH15,
Lemmas 7 and 8]), such an equivalence is not sufficient to establish the NP-completeness of the problem.
However, it is still possible to show such a result by a direct reduction from the 3-SAT problem.

First, we introduce some terminology about satisfiability of formulas. Given a set V of variables taking
values in {t, f}, a literal l is either a variable v or the negation of a variable ¬v, where v ∈ V . A clause Cl
is a disjunction of literals. A formula φ is written in conjunctive normal form with three variables per clause
(3-CNF) if φ =

∧n
i=1 Cl i where each clause Cl i is a disjunction of three literals. To simplify the presentation,

we assume that each clause contains distinct literals. A formula φ is satisfiable if there exists a logical value
assignment for the variables that makes the formula true. Given a formula φ, we denote by Var(φ) the set
of variables occurring in φ, by Lit(φ) the set of literals occurring in φ, by Cl(φ) the set of clauses of φ, and,
given a literal l, we denote by Cl(φ, l) the set of clauses of φ where l occurs.

Proposition 3. Given a PA A, a state s ∈ S, an action a ∈ Σ, and a probability measure µ ∈ Disc(S),
checking whether there exists a Dirac scheduler inducing s a=⇒ µ is NP-complete.

Proof. To prove the claim, we have to show two results: the problem is NP-hard and belongs to NP.
The fact that the problem belongs to NP follows directly from the fact that the existence of a weak

transition induced by a Dirac scheduler can be encoded as a MINLP problem, that is in NP.
For showing the NP-hardness, we provide a reduction from the 3-SAT problem. Let φ =

∧n
i=1 Cl i be a

3-CNF formula, n = |Cl(φ)|, and m = |Var(φ)|.
Consider the PA Aφ whose set of states is S = {φ,O} ∪ Var(φ) ∪ { vf, vt | v ∈ Var(φ) } ∪ Cl(φ), whose

start state is φ, whose set of actions is Σ = {τ}, and whose transitions are:

T = {φ τ−→ υVar(φ)} ∪ { v τ−→ δvt , v
τ−→ δvf | v ∈ Var(φ) }

∪ { vt τ−→ ρv | v ∈ Lit(φ) } ∪ { vf τ−→ ρ¬v | ¬v ∈ Lit(φ) }

∪ {Cl τ−→ {(Cl ,
1

k
), (O,

k − 1

k
)} | Cl ∈ Cl(φ), k ∈ {1, 2, 3} },

16 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

where, for a literal l, ρl is defined as

ρl(t) =

1
n if t ∈ Cl(φ, l),
|Cl(φ)\Cl(φ,l)|

n if t = O,

0 otherwise.

We now prove that φ is satisfiable if and only if Aφ exhibits the weak transition φ τ=⇒ µ where

µ(t) =

1
n·m if t = Cl for some clause Cl ∈ Cl(φ),

1− 1
m if t = O, and

0 otherwise.

Suppose that φ is satisfiable; this implies that there exists a truth value assignment for the variables
occurring in φ that makes the formula true. Moreover, since φ is satisfiable, it follows that at least one literal
of each clause Cl ∈ Cl(φ) has assignment t. Let σ be the Dirac scheduler defined as follows:

σ(α) =

δ
φ

τ−→υVar(φ)
if α = φ,

δ
v
τ−→δvt

if α = φτv and v is t in the assignment,

δ
v
τ−→δvf

if α = φτv and v is f in the assignment,

δ
vt

τ−→ρv
if α = φτvτvt and v ∈ Lit(φ),

δ
vf

τ−→ρ¬v
if α = φτvτvf and ¬v ∈ Lit(φ),

δ
Cl

τ−→{(Cl, 1k),(O, k−1
k)} if α ∈ {φτvτvtτCl , φτvτvfτCl} and exactly k literals of Cl are t,

δ⊥ otherwise.

It is rather easy to verify that σ actually induces the weak transition φ τ=⇒ µ. Consider, for instance, a clause
Cl ; let Cl = l1 ∨ l2 ∨ l3 and vi be the variable associated to the literal li. The probability of reaching Cl is:

µσ,φ({α ∈ frags∗(Aφ) | last(α) = Cl })
= µσ,φ({φτv1τv

v
1τClτCl}) if l1 = t and v is the assignment of v1

+ µσ,φ({φτv2τv
v
2τClτCl}) if l2 = t and v is the assignment of v2

+ µσ,φ({φτv3τv
v
3τClτCl}) if l3 = t and v is the assignment of v3

For each i ∈ {1, 2, 3} such that li = t, we have that µσ,φ({φτviτvvi τClτCl}) = 1
m ·

1
n ·

1
k , where k is the

number of literals of Cl that are t. In fact, for each i ∈ {1, 2, 3} such that li = t,

µσ,φ({φτviτvvi τClτCl})
= µσ,φ(CφτviτvviτClτCl) · σ(φτviτv

v
i τClτCl)(⊥)

= µσ,φ(Cφ) ·
(∑

tr∈T(τ)

σ(φ)(tr) · µtr (vi)
)

·
(∑

tr∈T(τ)

σ(φτvi)(tr) · µtr (vvi)
)

·
(∑

tr∈T(τ)

σ(φτviτv
v
i)(tr) · µtr (Cl)

)
·
(∑

tr∈T(τ)

σ(φτviτv
v
i τCl)(tr) · µtr (Cl)

)
· σ(φτviτv

v
i τClτCl)(⊥)

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 17

(In the following step, we omit the transitions chosen by σ with probability 0; for instance, φ τ−→ υVar(φ)

when α = φτvi. For improving readability, we write θCl for the distribution {(Cl , 1
k), (O, k−1

k)}.)

= µσ,φ(Cφ) ·
(
σ(φ)(φ τ−→ υVar(φ)) · υVar(φ)(vi)

)
·
(
σ(φτvi)(vi

τ−→ δvvi) · δvvi (v
v
i)
)

·
(
σ(φτviτv

v
i)(v

v
i

τ−→ ρl) · ρl(Cl)
)

·
(
σ(φτviτv

v
i τCl)(Cl τ−→ θCl) · θCl(Cl)

)
· σ(φτviτv

v
i τClτCl)(⊥)

= 1 ·
(1

m

)
·
(

1
)
·
(1

n

)
·
(1

k

)
· 1 =

1

m
· 1

n
· 1

k

Since µσ,φ({φτviτvvi τClτCl}) = 1
m ·

1
n ·

1
k holds for each i ∈ {1, 2, 3} such that li = t, it follows that, for

k literals being t in Cl , the overall probability assigned to the state Cl is k · 1
m ·

1
n ·

1
k = 1

n·m as required.
Since this probability is independent from the particular Cl , the overall probability assigned to Cl(φ) is
n× 1

n·m = 1
m ; the remaining probability value 1− 1

m is assigned to O, as required, as it can be easily checked
in a similar way. The other properties the scheduler has to satisfy trivially follow from the previous one and
the fact that the PA Aφ has E = ∅, so σ actually induces the weak transition φ τ=⇒ µ. This completes the
proof that if φ is satisfiable, then there is a Dirac scheduler inducing φ τ=⇒ µ.

Now, suppose that there exists a Dirac scheduler inducing φ τ=⇒ µ. We want to derive a logical value
assigment such that the formula φ holds. For each variable v ∈ Var(φ), define the assignment θ(v) as follows:

θ(v) =

{
t if σ(φτv) = δ

v
τ−→δvt

,

f otherwise.

Since by hypothesis each clause Cl is reached with probability 1
n·m , it means that there exists at least one

finite execution fragment of the form φτvτvvτClτCl that occurs with non-zero probability. In particular,

v =

{
t if σ(φτv) = δ

v
τ−→δvt

,

f otherwise,

i.e., v has truth value v. Moreover, the existence of such execution fragment implies that the literal v occurs
in Cl if v = t or the literal ¬v occurs in Cl if v = f. The former case implies that Cl = v ∨ l′ ∨ l′′ for some
literal l′ and l′′ with v = t, while the latter case implies that Cl = ¬v ∨ l′ ∨ l′′ for some literal l′ and l′′

with v = f. In both cases the clause Cl is satisfied, hence φ is satisfied as well since Cl is a generic clause
in Cl(φ). This concludes the proof that if there exists Dirac scheduler inducing the weak transition φ τ=⇒ µ,
then φ is satisfiable.

Since we have shown that φ is satisfiable if and only if Aφ exhibits the weak transition φ τ=⇒ µ, in order
to complete the reduction we have to show that the reduction is polynomial in the size of the formula φ:
this follows immediately by the construction of Aφ whose number of states and transitions is linear in the
number of variables and clauses of φ.

5.3. Complexity Analysis of Deciding Weak Bisimulation

Proposition 2 allows us to verify the existence of a weak transition t a=⇒c µt such that µs L(R) µt at line 3
of FindSplit efficiently: W (N) is actually p(N) for some polynomial p, hence the following result holds.

Theorem 1. Given two PAs A1 and A2, let N = size(A1) + size(A2). Checking A1 ≈ A2 is polynomial in
N .

18 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

6. Efficiency of Solving the LP Problem

The analysis of the LP(t, a, µ,R) LP problem formalized in [TH15, Proposition 6] considers the theoretical
complexity class the problem belongs to. It does not address how efficiently the LP problem can indeed be
solved. Practical implementation aspects and empirical results will be presented in Section 7. To prepare
for that, we first discuss abstract observations concerning the worst case running time needed to solve
the LP problem. Then we recast the LP problem into a flow network problem and exploit the underlying
network structure to arrive at an efficient LP problem solution approach harvesting an algorithm in the
network optimization setting. We further discuss various alternative approaches to improve solution efficiency,
including approximative methods.

6.1. Efficient Solution: Theory

Throughout this section, we define the dimension of an input to an algorithm as the number of data items
in the input. The size of a rational number p/q is defined as the length of its binary description, i.e.,
size(p/q) = dlog2(p+ 1)e+ dlog2(q + 1)e, where dxe denotes the smallest integer not less than x. The size of
a rational vector or matrix is defined as the sum of the sizes of its entries.

Deciding the existence of a weak transition in a probabilistic automaton can be done in polynomial time
[TH15, Proposition 6 and Theorem 8]. With the aim to refine this result, we discuss the problem in the
context of the restricted class of rational probabilistic automata.

Rational PAs We start our analysis with the class of rational PAs.

Definition 9. Given a PA A, we say that A is rational if for each (s, a, µ) ∈ T and v ∈ Supp(µ), we have
that µ(v) ∈ Q.

For this class of PAs, we look for a tighter worst case complexity bound of solving the LP problem
LP(t, a, µ,R). We proceed via a reformulation that reduces the size of LP(t, a, µ,R). This size reduction
directly reduces the solution effort needed for the LP problem, since the latter depends on the number of
variables and constraints, and this will indeed provide a tighter worst case bound. To reach our goal, we
modify the network provided in Definition 7 and reformulate the original LP problem on the basis of these
changes.

Consider the network G(t, a, µ,R) and let G(t, a, µ,R) be a directed network which is generated from
the network G(t, a, µ,R) by removing the source node M and the sink node H; let V = V \ {M,H} and
E = E \ ({(M, t)} ∪ { (C,H) | C ∈ S/R}) be the set of vertices and directed arcs of G(t, a, µ,R), respectively.
Moreover, let Ē ⊆ E be the set Ē = { (vtr , v′), (vtra , v

′
a) | tr = v τ−→ ρ ∈ T , v′ ∈ Supp(ρ) } ∪ { (vtra , v

′
a) | tr =

v a−→ ρ ∈ T , v′ ∈ Supp(ρ) }. Then, we define ρi,j = µtr (v′) as the proportionality coefficient corresponding
to the arc (i, j) ∈ Ē where (i, j) = (vtr , v′) or (i, j) = (vtra , v

′
a). Since in both original and modified networks

each arc in Ē belongs to a single transition, the corresponding proportional coefficient is uniquely determined.
For each node u ∈ V, let bu be a supply/demand value, that is, if bu > 0 the node u is a supply node

and if bu < 0 the node u is a demand node. For the network G(t, a, µ,R), we define bu for each node u ∈ V
so as to take value 1 if u = t, value −µ(C) if u = C ∈ S/R and 0 otherwise. It is immediate to see that∑
u∈V bu = 0. This fact can be seen as a feasibility condition in the corresponding flow network [AMO93]. For

s ∈ T , assume As to be the set of all arcs in the node-arc incidence matrix A that should have proportional
flow. We define Ã to be the subset of arcs in A that do not belong to any set As for s ∈ T . More precisely,
Ã = A \

⋃
s∈T As. Based on the definitions, the LP(t, a, µ,R) LP problem can be reformulated as follows:

LP1: min
∑

(i,j)∈E fi,j
s.t.

∑
(i,j)∈E fi,j −

∑
(j,i)∈E fj,i = bi for each i ∈ V

fi,j
ρi,j

are all equal s ∈ T , (i, j) ∈ As
fi,j ≥ 0 for each (i, j) ∈ E

Lemma 1. The LP(t, a, µ,R) LP problem and LP1 are equivalent.

Proof. The statement follows immediately by a simple manipulation of the balancing constraints: consider
the transition tr = v τ−→ ρ; it is encoded in the network as the transition node vtr and the arcs (v, vtr) and

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 19

(vtr , v′) for v′ ∈ Supp(ρ). The corresponding balancing constraints are fvtr ,v′ − ρ(v′) · fv,vtr = 0, that is,
fvtr ,v′

ρ(v′) = fv,vtr . Since fv,vtr is independent on v′, it follows that the ratio
fvtr ,v′

ρ(v′) is equal for all v′ ∈ Supp(ρ),

as required.
The same holds for the transition nodes vtra and vtr

′

a , the latter corresponding to the transition tr ′ =
v a−→ γ.

By assuming the unit flow cost ci,j = 1 for each arc (i, j) ∈ E , the objective of this problem is to minimise
the total cost of routing the flow on network arcs subject to the ordinary flow conservation constraints, the
proportional flow constraints corresponding to the balancing constraints of the original LP problem, and the
arc flow lower bounds.

It is worthwhile to note that there exists a proportional flow set for each transition node in the network
and that each arc may belong to at most one proportional flow set. The flow on the arcs in each of these
flow proportional sets can be regarded as a single decision variable. Using this intuition, let ai,j denote the
column corresponding to the arc (i, j) in the node-arc incidence matrix of the network G(t, a, µ,R) and let
as =

∑
(i,j)∈As ρi,j · ai,j for each s ∈ T . We denote by aks the k-th component of the vector as. Since the

column vector ai,j in the node-arc incidence matrix includes only entities 0, +1 and -1 therefore, the k-th
component of the vector as, i.e., aks can be equivalently written as aks =

∑
(k,j)∈As ρk,j −

∑
(j,k)∈As ρj,k. By

using the new notations, LP1 can be reformulated as the following LP problem which in turn can be regarded
as an adaptation of the LP considered in [BF12].

LP2: min
∑

(i,j)∈Ã fi,j +
∑
s∈T fs

s.t.
∑

(i,j)∈Ã fi,j −
∑

(j,i)∈Ã fj,i +
∑
s∈T a

i
s · fs = bi for each i ∈ V

fi,j ≥ 0 for each (i, j) ∈ Ã
fs ≥ 0 for each s ∈ T

Lemma 2. LP1 and LP2 are equivalent.

Proof. Let f = { fi,j | (i, j) ∈ Ã } ∪ { fs | s ∈ T } be a feasible solution for LP2. Define flow f̃ as follows:

f̃i,j =

fi,j if (i, j) ∈ Ã
ρi,j · fs if s ∈ T and (i, j) ∈ As
0 otherwise.

We claim that the flow f̃ satisfies the LP1 constrains. To show this, in the first set of constraints in LP1 and
for each i ∈ V we get the following equivalences (comments refer to the previous equivalence):

∑
(i,j)∈E

f̃i,j −
∑

(j,i)∈E

f̃j,i =

 ∑
(i,j)∈Ã

f̃i,j +
∑

(i,j)∈E\Ã

f̃i,j

−
 ∑

(j,i)∈Ã

f̃j,i +
∑

(j,i)∈E\Ã

f̃j,i

=

∑
(i,j)∈Ã

f̃i,j −
∑

(j,i)∈Ã

f̃j,i +
∑

(i,j)∈E\Ã

f̃i,j −
∑

(j,i)∈E\Ã

f̃j,i

=
∑

(i,j)∈Ã

f̃i,j −
∑

(j,i)∈Ã

f̃j,i +
∑
s∈T

∑
(i,j)∈As

f̃i,j −
∑
s∈T

∑
(j,i)∈As

f̃j,i

by definition of Ã

=
∑

(i,j)∈Ã

fi,j −
∑

(j,i)∈Ã

fj,i +
∑
s∈T

∑
(i,j)∈As

ρi,j · fs −
∑
s∈T

∑
(j,i)∈As

ρj,i · fs

by definition of f̃

=
∑

(i,j)∈Ã

fi,j −
∑

(j,i)∈Ã

fj,i +
∑
s∈T

fs ·

 ∑
(i,j)∈As

ρi,j −
∑

(j,i)∈As

ρj,i

20 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

by simple term manipulation

=
∑

(i,j)∈Ã

fi,j −
∑

(j,i)∈Ã

fj,i +
∑
s∈T

ais · fs

by definition of ais

= bi

by definition of LP2. Moreover, for each s ∈ T and (i, j) ∈ As, f̃i,j
ρi,j

=
ρi,j ·fs
ρi,j

= fs. This means that for each

s ∈ T and for all (i, j) ∈ As, f̃i,j
ρi,j

are all equal. Also, for each (i, j) ∈ Ã, f̃i,j = fi,j ≥ 0 and for each s ∈ T
and (i, j) ∈ As, f̃i,j = ρi,j · fs ≥ 0. Therefore, f̃i,j for (i, j) ∈ E is indeed a feasible solution for LP1. Next,
consider the value of the objective function for LP1:∑

(i,j)∈E

f̃i,j =
∑

(i,j)∈Ã

f̃i,j +
∑

(i,j)∈E\Ã

f̃i,j

=
∑

(i,j)∈Ã

f̃i,j +
∑
s∈T

∑
(i,j)∈As

f̃i,j

by definition of Ã

=
∑

(i,j)∈Ã

fi,j +
∑
s∈T

∑
(i,j)∈As

ρi,j · fs

by definition of f̃

=
∑

(i,j)∈Ã

fi,j +
∑
s∈T

fs ·

1︷ ︸︸ ︷∑
(i,j)∈As

ρi,j

by simple term manipulation and the fact that ρi,j = µtr (v′) where (i, j) = (vtr , v′) or (i, j) = (vtra , v
′
a)

=
∑

(i,j)∈Ã

fi,j +
∑
s∈T

fs.

Therefore, corresponding to this feasible solution, the value of the objective function of both LP problems
are the same. For the reverse side, assume f̄ = { f̄i,j | (i, j) ∈ E } is a feasible solution for LP1. Define the

flow f̂ = { f̂i,j | (i, j) ∈ Ã } ∪ { f̂s | s ∈ T } where f̂i,j = f̄i,j for (i, j) ∈ Ã and f̂s =
f̄i,j
ρi,j

for each s ∈ T where

(i, j) ∈ As. In the following we show that f̂ is a feasible solution for LP2. For each i ∈ V, it holds:∑
(i,j)∈Ã

f̂i,j −
∑

(j,i)∈Ã

f̂j,i +
∑
s∈T

ais · f̂s

=
∑

(i,j)∈Ã

f̂i,j −
∑

(j,i)∈Ã

f̂j,i +
∑
s∈T

 ∑
(i,j)∈As

ρi,j −
∑

(j,i)∈As

ρj,i

 · f̂s
by definition of ais

=
∑

(i,j)∈Ã

f̂i,j −
∑

(j,i)∈Ã

f̂j,i +
∑
s∈T

∑
(i,j)∈As

ρi,j · f̂s −
∑
s∈T

∑
(j,i)∈As

ρj,i · f̂s

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 21

by simple term manipulation

=
∑

(i,j)∈Ã

f̄i,j −
∑

(j,i)∈Ã

f̄j,i +
∑
s∈T

∑
(i,j)∈As

f̄i,j −
∑
s∈T

∑
(j,i)∈As

f̄j,i

by definition of f̂

=
∑

(i,j)∈Ã

f̄i,j +
∑
s∈T

∑
(i,j)∈As

f̄i,j −

 ∑
(j,i)∈Ã

f̄j,i +
∑
s∈T

∑
(j,i)∈As

f̄j,i

by simple term manipulation

=
∑

(i,j)∈Ã

f̄i,j +
∑

(i,j)∈E\Ã

f̄i,j −

 ∑
(j,i)∈Ã

f̄j,i +
∑

(i,j)∈E\Ã

f̄j,i

by definition of Ã

=
∑

(i,j)∈E

f̄i,j −
∑

(j,i)∈E

f̄j,i

= bi

by definition of LP1.

Moreover, for each (i, j) ∈ Ã, f̂i,j = f̄i,j ≥ 0 and also for each s ∈ T , f̂s =
f̄i,j
ρi,j
≥ 0. Therefore, f̂ is a feasible

solution for the LP2. The amount of the objective function of LP2 corresponding to this feasible solution is:∑
(i,j)∈Ã

f̂i,j +
∑
s∈T

f̂s =
∑

(i,j)∈Ã

f̂i,j +
∑
s∈T

1 · f̂s

=
∑

(i,j)∈Ã

f̂i,j +
∑
s∈T

 ∑
(i,j)∈As

ρi,j

 · f̂s
by the fact that ρi,j = µtr (v′) where (i, j) = (vtr , v′) or (i, j) = (vtra , v

′
a) and that

∑
(i,j)∈As ρi,j = 1

=
∑

(i,j)∈Ã

f̂i,j +
∑
s∈T

∑
(i,j)∈As

ρi,j · f̂s

by simple term manipulation

=
∑

(i,j)∈Ã

f̄i,j +
∑
s∈T

∑
(i,j)∈As

f̄i,j

by definition of f̂s

=
∑

(i,j)∈Ã

f̄i,j +
∑

(i,j)∈E\Ã

f̄i,j

by definition of Ã

=
∑

(i,j)∈E

f̄i,j .

22 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

As a consequence, since every feasible solution for LP1 is a feasible solution for LP2 and vice versa, and the
value of the objective functions is the same, we have that LP1 and LP2 are equivalent.

Since both LP1 and LP2 are equivalent to the LP(t, a, µ,R) LP problem, we exploit the structure of LP2
to improve the efficiency of checking for a solution of LP(t, a, µ,R). Simultaneously, we also improve the
complexity of deciding weak bisimulation. Amongst all available versions of polynomial algorithms for solving
a linear programming problem, we resort to a state-of-the-art polynomial interior point method [Ans99]
which, to the best of our knowledge, is equipped with the tightest known worst case complexity.

Theorem 2. Consider a rational PA A, the action a, the probability measure µ ∈ Disc(S), the equivalence
relation R on S and a state t ∈ S. Let N = size(A). Then, checking the feasibility of the LP(t, a, µ,R) LP

problem can be done in O(N
3

lnN · L) where L is the bit size of the problem.

Proof. By Lemmas 1 and 2, LP(t, a, µ,R) is feasible if and only if LP2 is feasible. Now, consider the dual of
LP2; by assigning the dual variables πs for each s ∈ V, hence O(N) variables, we get the following dual LP
problem:

DLP2: max
∑
s∈V bs · πs

s.t. πi − πj ≤ 1 for each (i, j) ∈ Ã∑
t∈V a

t
s · πt ≤ 1 for each s ∈ T .

By using a state-of-the-art preconditioned conjugate gradient (PCG) method with a partial updating proce-

dure [Ans99], this LP problem can be solved optimally in O(N
3

lnN ·L) where L is the bit size of the problem.
At termination of the algorithm, we have two possible cases:

1. The dual LP problem has a finite optimal objective value: by the strong duality theorem [BT97], the
original LP2 is feasible and also has a finite optimal objective value.

2. The dual LP problem is unbounded: by the strong duality theorem the original LP2 is infeasible.

Thus, by solving the dual LP problem efficiently, we can verify the existence of a weak combined transition
for the given PA.

Notably, if we were to use the interior point method directly on the original LP problem instead of LP2,
we would face an extra factor N in the complexity bound. This is because the running time of the method
depends on the number of variables: The number of variables occuring in LP(t, a, µ,R) is O(N2) while the
number of variables in LP2 is O(N). This reduction directly translates into a reduced worst case complexity,
and this especially appreciable if working with large probabilistic automata.

Corollary 1. Given two PAs A1 and A2, let N = size(A1) + size(A2). Checking A1 ≈ A2 can be done in

time O(N
6

lnN · L) where L is the maximum bit size of the LP problems solved in FindSplit and Refine.

Proof. Immediate by Proposition 1 and Theorem 2.

Since the worst case runtime bound essentially depends on the type of the polynomial algorithm used to
solve the LP problem, any advancement in LP problem solution complexity directly improves the complexity
of the weak bisimulation decision problem.

Remark 5. If considering the structure of the LP(t, a, µ,R) LP problem, one might observe that it is in
essence a system of linear equations with non-negativity constraints. So, we may consider instead to use
elimination techniques (inspired by Gaussian elimination) to reduce the number of variables and constraints
we have in the LP problem:

1. take one of the linear equations, say fv,vtr −
∑

(vtr ,u)∈E fvtr ,u = 0 and one variable occurring in it, say

fv,vtr ;

2. express the variable as linear combination of the other variables, i.e., fv,vtr =
∑

(vtr ,u)∈E fvtr ,u;

3. replace each occurrence of the variable with such combination, i.e., fv,vtr by
∑

(vtr ,u)∈E fvtr ,u.

If we iterate this process until no more variables can be isolated at step 2, we obtain another LP problem
that is equivalent to the original one.

Now, since we are not interested in the actual value of the variables, but only on whether the problem is

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 23

feasible, we can eliminate the equations we considered at step 1 and the corresponding variables at step 2.
This results in an LP problem no more equivalent to the original one, but it is easy to show that the latter
is feasible if and only if the original problem is.

As an example, consider the following LP problem:

f0 − f1 − f2 − f3 = 0 f0 = 1 f0 ≥ 0 f1 ≥ 0
f1 + f2 − f4 = 0 f4 = 0.5 f4 ≥ 0 f2 ≥ 0
f3 − f5 = 0 f5 = 0.5 f5 ≥ 0 f3 ≥ 0

In a single time, if we replace f0, f4, and f5 with their respective values, we obtain:

1− f1 − f2 − f3 = 0 f0 = 1 1 ≥ 0 f1 ≥ 0
f1 + f2 − 0.5 = 0 f4 = 0.5 0.5 ≥ 0 f2 ≥ 0
f3 − 0.5 = 0 f5 = 0.5 0.5 ≥ 0 f3 ≥ 0

Now, by replacing f3 with 0.5, the system becomes:

1− f1 − f2 − 0.5 = 0 f0 = 1 1 ≥ 0 f1 ≥ 0
f1 + f2 − 0.5 = 0 f4 = 0.5 0.5 ≥ 0 f2 ≥ 0
f3 − 0.5 = 0 f5 = 0.5 0.5 ≥ 0 0.5 ≥ 0

and by substituting f1 with 0.5− f2:

1− 0.5 + f2 − f2 − 0.5 = 0 f0 = 1 1 ≥ 0 0.5− f2 ≥ 0
f1 = 0.5− f2 f4 = 0.5 0.5 ≥ 0 f2 ≥ 0
f3 = 0.5 f5 = 0.5 0.5 ≥ 0 0.5 ≥ 0

that is,

0 = 0 f0 = 1 1 ≥ 0 0.5− f2 ≥ 0
f1 = 0.5− f2 f4 = 0.5 0.5 ≥ 0 f2 ≥ 0
f3 = 0.5 f5 = 0.5 0.5 ≥ 0 0.5 ≥ 0

This system is feasible and it has a solution for each 0 ≤ f2 ≤ 0.5.
This approach looks promising, but in fact is much more expensive than the result achieved by Theorem 2:

if we ignore the bit size of the problem, for an n×n matrix, the Gaussian elimination has complexity O(n3)
where n is the number of variables in the system of equations (corresponding to the number of columns of
the matrix). In our setting, we have an m× n matrix with m > n, thus the actual complexity is larger than
O(n3). If we now express the complexity of the Gaussian elimination approach in terms of N = size(A), since
we have O(N2) variables, the resulting complexity is at least O(N6), without considering the complexity of
solving the remaining LP problems.

Non-rational automata The class of rational probabilistic automata, as far as the authors know, encom-
passes all PAs that have appeared in practical applications. One may nevertheless consider relevant also the
analysis of PAs with real valued probabilities.

One possible way to represent LP problems with real data is to use a model of computation that can
perform any elementary arithmetic operation in constant time, regardless of the type of the operand. Another
option is to encode reals as finite precision rationals. For a survey on the theory of computation over real
numbers we refer the reader to [BSS89, Bel01].

When using finite precision rationals, the representation of the PA must become approximate, and still
the size needed for this can no longer be guaranteed to be bounded by a polynomial. If assuming the rational
approximation scheme being employed by the user, we are back to the rational setting for the LP problem
solution process, and it is left to the user to interpret the outcome on the real valued PA. If instead the
algorithm performs the approximation prior to solving the induced LP problem, the user may in general lack
knowledge on how to transfer the result back to the original real valued PA.

6.2. Efficient Solution: Exploiting Structure

We now consider the practical efficiency of deciding probabilistic automata weak bisimulation. We first
discuss available algorithms that can be employed. We show that the underlying structure of the problem

24 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

enables us to check feasibility of the LP problem more efficiently than by just resorting to a general purpose
LP solver implicitely finding the optimal solution. Afterwards we discuss other methods that are known to
more efficient in general but turn out to be unsuitable for solving the LP(t, a, µ,R) LP problem.

Working with a linear programming problem allows practitioners to use the omnipresent simplex method
as an extremely efficient computational tool. It is worthwhile to note that the efficiency of the simplex method
is measured as the number of pivots needed to solve the LP problem. Moreover, practical experiments show
that although this method is highly efficient, there exist problems that require an exponential number of
pivots. This means that the worst case theoretical complexity of the simplex method is exponential time
[KM72]. However, computational experience on thousands of real-world problems reveals that the number
of pivots is usually polynomial in the number of variables and of constraints.For a comprehensive survey on
the efficiency of the simplex method, we refer the interested reader to [Sha87].

Since the LP1 problem is a minimum cost flow problem on the network G(t, a, µ,R) extended with an
additional set of proportional flow constraints, we consider the usage of efficient algorithms that solve the
problem directly on the flow network itself. One such algorithm is the network simplex algorithm [BF12]
for the minimum cost proportional flow problem that improves the per iteration running time considerably
with respect to the simplex method, as long as the number of nodes in the network is at least an order of
magnitude larger than the number of side constraints in the LP problem [Cal02, MSJ11, BF12, MSJ13]. So,
the network simplex algorithm is a candidate for improving the running time required to solve LP1. However,
the number of side constraints coincides with the number of transition nodes in the LP1 problem. Since the
number of transitions in the automaton is usually larger than the number of states, we have that the number
of side constraints is linear in the number of nodes, and thus the above assumption is not satisfied. Still, a
more accurate analysis tells us that, in our setting, the resulting per iteration running time of both methods
is in the same complexity class, as shown in Table 1. Since it is known that the network simplex algorithm
without side constraints performs better than the simplex method [AMO93], it is still worthwhile to consider
its usage in an implementation.

Up to now, we have discussed that the simplex method and the network simplex algorithm [BF12] appear
quite competitive in solving the LP1, and that the flow network structure underlying LP1 motivates the use
of the network simplex algorithm. On the other hand, we can take the dual of the equivalent LP2. This
allows us to deal with a smaller sized LP problem which is still close to a well known combinatorial problem
by itself. To clarify the point, consider the dual DLP2 of the LP2 problem:

DLP2: max
∑
s∈V

bs · πs

s.t. πi − πj ≤ 1 for each (i, j) ∈ Ã (1)∑
t∈V

ats · πt ≤ 1 for each s ∈ T (2)

The number of constraints in DLP2 is O(N), just as for LP1. The number of variables in DLP2 is O(N)
which compares favorably with O(N2), the number of variables in the original LP1. This observation is
particularly important whenever the number of transitions is considerably larger than the number of states
in the network. The dual LP problem can again be solved very efficiently using a state-of-the-art variant
of the interior point method [Ans99]. This algorithm is a preconditioned conjugate gradient (PCG) method
with a partial updating procedure which works excellent in practice as well. The algorithm is available in
the software tools like CPLEX and LOQO. Furthermore, DLP2 has itself a combinatorial structure, i.e., it
is the dual of the well known shortest path problem although with additional side constraints. Taking the
advantage of this combinatorial property may help in the design of a more efficient algorithm to solve the
problem.

Table 1 summarizes the size of the proposed LP problems and the per-iteration complexity of the simplex
method and of the network simplex algorithm. Since each variable in the LP problem corresponds to an arc in
the network, we identify by n both variables and arcs; on networks, each arc either belongs to a proportional
flow set or is a free arc. The computational comparison of three LP problems is described based on N which
is the size of the automaton A. It is immediate to see that LP2 and DLP2 are the smallest problems that
are at least one degree smaller than the other LP problems, making them more suitable as input for the LP
solvers.

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 25

Table 1. Complexity comparison

LP(t, a, µ,R) LP1 LP2 DLP2

Variables/Arcs n O(N2) O(N2) O(N) O(N)
Constraints m O(N2) O(N) O(N) O(N)
Proportional Flow Sets p not applicable O(N) not applicable not applicable
Free Arcs n′ O(N2) O(N) O(N) O(N)

Simplex Method O(nm) O(N4) O(N3) O(N2) O(N2)
Network Simplex Algorithm [MSJ13] O(n′ +mp+ p3) not applicable O(N3) not applicable not applicable

6.3. Efficient Solution: Unsuitable Approaches

As we have seen, the LP(t, a, µ,R) LP problem can be solved efficiently using the simplex method or the
network simplex algorithm.

Several other solutions have been proposed in the literature to solve variations of LP problems more effi-
ciently: among others, there are approximated algorithms [Vaz04], electrical flow representation [CKMS11],
network decomposition [Pul89], and Lagrangian relaxation [BT97]. As we will see in the remainder of this
section, all these approaches are not suitable for solving the LP(t, a, µ,R) LP problem and its equivalent
reformulations, but for different reasons: either because the corresponding model does not enable an encoding
of the LP(t, a, µ,R) LP problem at hand, or the answer provided by the algorithm can not always be mapped
into an answer to our problem, or the algorithm is prohibitively expensive in case of a positive answer.

Despite being unsuitable, we review our findings concerning these methods for two main motivations:
the first is to clearly identify the specific characteristics of the problem faced, the second motivation is to
propose a new challenging problem to both the optimization and the probabilistic automata world.

6.3.1. Approximation Algorithms

As a first approach, we consider the use of an approximation algorithm to check the feasibility of the original
LP problem by dropping the proportional flow constraints and then solving the remaining linear programming
problem efficiently. This exploits that the remaining LP problem is actually a minimum cost flow problem on
the network G(t, a, µ,R) and the general network simplex algorithm can solve it extremely efficiently. If the
relaxed problem is infeasible, so it is the original LP problem; otherwise, we get a feasible solution that may
not be feasible for the original one. In this case, we assign fixed weights to each proportional flow constraint
and increase the weight for the violated side constraints as a penalization. This procedure, known as the
multiplicative weight update method [AHK12], is repeated until a feasible solution which is near optimal is
found. The advantage of this approach is that in each iteration we deal with a well structured LP problem
that can be solved efficiently.

The main problem of this approach is that in general a positive result does not imply the existence of
the corresponding weak transition. Consider, for example, the automaton whose only transitions are s a−→ µ
and t a−→ δv where µ = {(v, p), (u, 1 − p)} for some p ∈ [0, 1]; suppose that u 6R v. It is easy to verify that
µ 6L(R) δv for each p 6= 1, so there does not exist any weak transition t a=⇒c ρ such that µ L(R) ρ since the
only possible weak transition enabled by t labelled by a is t a=⇒c δv. However the approximation algorithm
gives us a positive answer whenever p is close enough to 1, so a positive answer does not ensure the existence
of the weak transition, unless we force the gap between optimal and near optimal objective values to be
0. But this may make the overall algorithm very expensive. However, for practical purposes, approximated
algorithms can be used to refute the existence of a weak transition.

6.3.2. Electrical Flows

As a second approach we consider a physical metaphor for graphs by transforming the network G(t, a, µ,R)
as an electrical network. This comes with replacing the arcs of the network by resistors. Our goal is to
arrive at a setting where we can use the state-of-the-art max flow algorithm [CKMS11] as an approximation
algorithm to solve the original LP problem. The weakness of this approach is twofold: the approximate nature
of the procedure has the same drawback as the previous approach, and furthermore the applicability of the
transformation. Even if an efficient non-approximate algorithm was at hand, the transformation can not be

26 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

applied, since it is restricted to undirected networks [CKMS11], while G(t, a, µ,R) is directed. Extending
the results in [CKMS11] to directed networks is an open problem.

To make the network directed, we may represent each arc by a resistor and a diode that is a two-terminal
component allowing the current to flow in a single direction. Even by using diodes to direct the network,
we still need to solve two problems: cycles and nondeterminism. In an electrical network it is not possible
to have the current going through a passive cycle since the overall potential difference in the cycle is zero,
unless we use some fictitious voltage generator that breaks the cycle, while in probabilistic automata it is
common to have internal cycles: consider for instance the transition s τ−→ µ where µ = {(t, 0.3), (s, 0.7)}; by
using the determinate scheduler σ that stops in t and performs s τ−→ µ in s, we obtain the weak transition
s τ=⇒c δt, that is, we eventually leave the self-loop with probability 1. In order to obtain a similar result
in an electrical network, we have to add a fictitious voltage generator in the cycle corresponding to the
self-loop that generates the correct potential difference. Finding such difference is essentially equivalent
to defining the scheduler. The second problem is related to nondeterminism: suppose that we have two
transitions s τ−→ µ and s τ−→ ρ where µ = {(u, 0.3), (v, 0.7)} and ρ = {(u, 0.7), (v, 0.3)}, so we can reach v
with different probabilities by using two different transitions. When we encode these two transitions in the
electrical network, we obtain two parallel paths from s to v that are subject to the same voltage difference
Vsv, so the current flows in both paths according to Ohm’s law. However the scheduler can choose to perform
only s τ−→ µ thus in the network we should have a non null current from s to v in the path modelling such
transition and a null current in the path corresponding to s τ−→ ρ, that is, the former requires Vsv > 0 while
the latter requires Vsv = 0 and this is clearly impossible.

6.3.3. Network Decomposition

As a third approach, we consider a natural decomposition of the state space of the underlying network.
We aim at designing a parallel algorithm that speeds up the check for feasibility of the LP problem when
a ∈ E. The underlying network can be seen as a network of three layers (here considered in horizontal
layout): the left hand side and the right hand side layers correspond to the internal transitions (sets L1

and L2, respectively) while the central layer to the external transitions (set La). Moreover it is possible to
change layer only from left to right. Using this intuition, each layer can be treated independently so that the
network simplex algorithm instantiations can find the minimum cost flow in the left and the right layers in
parallel. Then, to connect these two layers via the central one is enough to solve a linear system of equations
corresponding to the central arcs. This system can be solved in linear time.

However, this approach is not suitable as a negative answer does not imply the non-existence of the weak
transition: consider the following PA.

t

u

v

x

y

z

τ
1/2

1/2

1a

1a 1/4
τ

3/4

1
τ

It is immediate to see that t a=⇒c δz; now, consider the identity relation over states I and the part
of the corresponding layered network between source and sink, where numbers attached to arcs indicate
probabilities, and are not part of the graph.

M t ttrt

u

v

utru
a

vtrva

xa xtrx
a

ya y
try
a

za [z]RI H

Left layer Right layer

1/2

1/2

1

1

1

1/4
3/4

The solution of the left layer is unique and it assigns outgoing flow 1/2 to both vertices u and v, while the

optimal solution for the right layer assigns flow 1 to arcs (xa, x
trx
a), (xtrxa , ta) and flow 0 to arcs (ya, y

try
a),

(y
try
a , ta), and (y

try
a , ya). By using these two optimal solutions, there is no way to obtain a solution for the

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 27

central layer since there is only one path from u to xa and flow requirements are different. However there
exists a solution for the network as a whole that requires for the right layer the non-optimal feasible solution
fxa,xtrx

a
= 1/2, fxtrx

a ,za
= 1/2, f

ya,y
try
a

= 4/2, f
y
try
a ,za

= 1/2, and f
y
try
a ,ya

= 3/2, thus a negative answer from

the layered network decomposition does not imply that there does not exist a feasible solution for the whole
network. The core reason is that the optimal solution of one layer may be not part of a feasible solution of
the whole network: a feasible solution may only be induced by a sub-optimal layer solution.

6.3.4. Lagrangian Relaxation

As a last approach, we consider a Lagrangian relaxation [BT97] algorithm to solve the dual LP problem
efficiently. Consider again the DLP2 problem; in order to form a Lagrangian relaxation of DLP2, we multiply
the set of constraints (2) by non-negative Lagrangian multipliers λs, s ∈ T , and we add them to the objective
function, obtaining the following relaxed dual LP (RDLP) problem:

L(λ): max
∑
t∈V

(bt +
∑
s∈T

λs · ats) · πt −
∑
s∈T

λs

s.t. πi − πj ≤ 1 for each (i, j) ∈ Ã

For a fixed vector λ, this LP problem can be efficiently solved using the simple and fast algorithm described
in [HN94].

Consider the Lagrangian dual LP (LDLP) problem:

LDLP: min L(λ)

s.t. λ ≥ 0

The purpose of the LDLP problem is to find the tightest bound L(λ) for the possible values of λ. Since
RLDP is always feasible with solution πt = 0 for each t ∈ V, we can make no claims on the feasibility of the
original DLP2 problem unless (1) actually finding a feasible solution for the original DLP2 problem, or (2)
proving that the optimum solution for LDLP is bounded. This is the main point that induces the weakness
of this approach as an efficient verification procedure.

7. Implementation of Minimization

The results presented thus far provide ample understanding for an implementation of a quotienting algorithm.
This section presents and discusses such an implementation which is tailored to the computation of the
minimal automaton that is weak probabilistic bisimilar to a given one [EHS+13]. In fact, some intricate
problems remained to be overcome to make the approach effective and scalable. These problems are rooted
in numerical aspects of the computations at hand as well as in the often excessive number of feasibility
checks needed. Both these aspects are genuine to the setting considered and neither occur in the context of
minimizing labelled transition systems, nor in other stochastic minimization contexts.

We here report on our second generation prototype minimizer, implemented in Java. It has a modular
structure and it can delegate the feasibility checks either to an LP solver, or to an SMT solver. We use
LpSolve [LpS] as LP solver, the GLP Kit [GLP] as exact arithmetic LP solver, and Z3 [dMB08] as SMT
solver. We encode our SMT formulation according to the SMT-LIB format [BST10] allowing the use of other
solvers. We can use an SMT solver instead of an LP solver since Proposition 2 relates the existence of the
desired weak transition t a=⇒ µt such that µ L(R) µt with the feasibility of the LP(t, a, µ,R) problem, so
we are not interested in the optimal solution, but just in a solution.

We perform the feasibility check directly on the original LP(t, a, µ,R) problem. This allows us to maintain
an undisguised view on the structure of the problem, which we considered important to ensure the correctness
of the prototype implementation, and also to assess the relative share of the different algorithmic steps to
the overall runtime and space requirements. We plan to implement the module for the smaller LP2 problem
to achieve better running times while preserving correctness.

28 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

7.1. Implementation Details

In our prototype we have implemented several heuristics in order to minimize the number of solver calls
needed to compute the coarsest weak bisimilarity. We can classify these heuristics in two classes: the pre-
bisimulation reductions and the in-loop optimizations. Finally, we consider the extraction of exact solutions
from inexact solutions to improve the in-loop optimizations and the parallelization of the solver calls.

7.1.1. Pre-Bisimulation Reductions

We reduce the automaton before computing the weak probabilistic bisimulation by removing irrelevant
transitions and collapsing states that are trivially bisimilar. In particular, we remove internal self loops (i.e.,
transitions as s τ−→ δs), we merge all deadlock states in a single one and each pair of states (s, t) in t such
that the only transition enabled by s is s τ−→ δt. Moreover, we merge states s and t if the transitions they
enable reach the same distributions via the same labels. These reductions are sound since it is easy to prove
that all these merged states are weak bisimilar.

It is also possible to apply a preliminary bisimulation reduction based on strong (probabilistic) bisimula-
tion [Seg06, Seg95] that would collapse some more state; note however that such reduction does not cover all
above reductions; for instance, it does not remove self-loops as well as usually it does not collapse transitions
like s τ−→ δt.

7.1.2. In-Loop Optimizations

We adopt several optimizations in order to reduce the number of weak combined transitions computed by
calling the solver. In particular, we implement the internal optimization that allows us to skip the LP
problem construction and solution whenever the challenging transition at line 2 of the FindSplit procedure
is of the form s τ−→ µs with µs([s]R) = 1. Such transition is trivially matched by any t ∈ [s]R by performing
no transitions at all. Similarly, by using the direct transition optimization we save a solver call if the state
t directly enables a transition t a−→ µt matching s a−→ µs, i.e., we check whether there exists (t, a, µt) ∈ T
such that µs L(R) µt. Finally, we maintain a transition cache containing for each state t, the list of computed
transitions t a=⇒c µt where the distribution µt has been generated by the solver on the LP(t, a, µs,R) problem
for some challenging transition s a−→ µs. This cache allows us to save a solver invocation whenever the cache
contains a matching transition. Suppose that we have already used the LP or SMT solver in order to find
a matching transition t a=⇒c µ

′
t for s a−→ µ′s such that µ′s L(R′) µ′t for some partitioning R′. As long as

µs L(R) µ′t holds for the current partitioning R, there is no need to call again the solver since it is going to
give a positive answer, so we can save such call. In order to be effective, we need to keep the cache updated
and this can be achieved easily since the only operation we need is to add entries to the cache, provided that
we store the computed t a=⇒c µt transitions.

7.1.3. Exact solutions from inexact solutions

The optimizations presented previously need to compare distributions, either when checking µs L(R) µt or
while searching for a cached weak combined transition. In order to be effective, rational numbers cannot
be represented using floating-point numbers since small rounding errors may render floating-point compar-
isons to become incorrect. For the direct transition optimization we overcome the problem by using exact
representations for probabilities, such as infinite precision integers. For the caching, we need to retrieve the
optimal feasible solution from an LP or SMT solver. This is only possible if we use an SMT solver or an LP
solver equipped with exact arithmetic, since floating-point based LP solvers only provide inexact solutions
for the system of inequalities, making the cache rather useless. We solve this problem via the inexact to exact
optimization, i.e., by finding the exact solution as long as the underlying rational number does not have a
large denominator. Any number p ∈ R can uniquely be represented as a simple continuous fraction of the
form:

a0 +
1

a1 + 1

. . .

Therefore any number can be represented canonically by the sequence a0, a1, . . . ; note that such sequence
is finite if and only if p ∈ Q. The canonical representation can be obtained by using the following inductive

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 29

definitions [JT80]:

ai = bpic p0 = p pi+1 = (pi − bpic)−1

Any number can be approximated by cn, the continuous fraction obtained from the finite sequence a0, . . . , an.
In fact, cn is the best rational approximation: any other rational number that is closer to p has a denominator
larger than cn. Moreover, cn+1 has a denominator larger than cn, thus the sequence {ci} converges absolutely
to p. We calculate the sequence of approximations c0, c1, . . . until we find a value cn such that |p− cn| < ε
for a predefined ε > 0.

7.1.4. Parallel solvers

In FindSplit, for each state s, for the current partitionR we have to check whether all its enabled transitions
have a matching weak transition in all the states in [s]R. During such a loop the partition R does not change,
therefore we can generate all the LP problems in advance, so as to solve them in parallel. We implemented
a simple thread pool where each single task checks all the matching transitions from a given t ∈ [s]R, i.e.,
the first task manages t1, the second task t2, and so on.

7.2. Case Studies

We evaluated our prototypical implementation by applying it to several cases studies taken from the liter-
ature. Experiments were run on four AMDr Opteronr 8350 (Quad-core) 2GHz with 120GB of RAM. We
only used 14 out of 16 cores with the memory usage restricted to 8GB. Time-outs correspond to experiments
that took more than 6 hours to complete. The models we considered are IEEE 802.3 CSMA/CD protocol,
dining cryptographers, IEEE 1394 FireWire root contention protocol, IEEE 802.11 Wireless LAN, and IPv4
Zeroconf protocol that we have taken from the PRISM benchmark suite [PRI] and only minor changes have
been made to manage the shared variables for synchronization. More information on the case studies and
the choice of parameters is directly available from the benchmark suite [PRI]. We hide the action time in
the variant with suffix “-nt” and we unify similar actions in the “-sa” variant; for example, we rename send1
and send2 to send.

7.2.1. Additional Reductions

Given a PA A, we denote by Aon the automaton resulting from the repeated application of the pre-
bisimulation reductions until such reductions do not change the automaton anymore. The effectiveness
of these reductions is shown in Table 2, where we report for several case studies the state and transitions
space size of the original automaton A, of the corresponding Aon, and of the minimal automaton [A]≈. The
columns tAon and t[A]≈ report the time needed to reduce A to Aon and to generate [Aon]≈ from Aon and the
given ≈, including the time for the post-quotient reductions of the automaton.

More precisely, we consider in [Aon]≈ also the time needed for removing redundant transitions (that
requires further checks for the existence of the weak combined transitions) and for rescaling distributions
(cf. Section 4.2). In particular, the former reduction requires to remove one transition at a time and check
whether there exists a weak combined transition using only the remaining transitions that reaches the same
distribution. The difference of time of the Wireless LAN case with respect to the other cases depends on the
number of internal transitions still present in the quotient as well as the number of transitions leaving the
state: if a state enables only one transition or only transitions with different external actions, then there is
no need to try to remove such a transition, since we will obtain a negative answer for sure.

7.2.2. Quotient Performance

Tables 3, 4, and 5 show the effects of the different optimizations and the running time of the implementation
of the Quotient procedure, where the solver used for checking LP(t, a, µs,R) is SMT, LP, and GLP,
respectively.

After the columns with the problem and the number of transitions of Aon, the column ∆ shows the
number of challenging transitions verified via the internal optimization. Note that this condition trivially
holds for each internal transition in the first round of the outer cycle since the initial partition contains only

30 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

Table 2. Minimization overview

Problem |S| |T | |Son| |Ton| tAon |[S]≈| |[T]≈| t[Aon]≈

csma2 1038 1054 835 849 1s 449 459 1s
csma2-sa 1038 1054 621 630 7s 233 237 < 1s

csma2-sa-nt 1038 1054 91 98 < 1s 87 90 < 1s
dining4 2165 4540 161 300 < 1s 1 1 < 1s
firewire3 611 694 425 469 5s 425 469 5s

firewire3-nt 611 694 29 62 < 1s 4 4 < 1s
wlan dl0dl6 97 148 63 94 < 1s 59 86 1s
wlan0col0 2954 3972 1097 1591 14s 798 1092 120s
zeroconf 670 827 341 433 < 1s 334 420 14s

zeroconf-nt 670 827 52 75 < 1s 41 52 < 1s

Table 3. Caching overview for SMT

Problem |Ton| ∆ DT CH TC t≈ tSolver |≈|

csma2 849 24297 82337 150 11700 288s 243s 449
csma2-sa 630 9111 66162 0 6067 97s 83s 233

csma2-sa-nt 98 1739 186 14 1118 12s 6s 87
dining4 300 45440 240 2175 145 6s 5s 1
firewire3 469 30842 34070 257 1311 44s 36s 425

firewire3-nt 62 664 833 48 166 2s 1s 4
wlan dl0dl6 94 107 277 46 405 4s 1s 59
wlan0col0 1591 48284 102296 14902 30204 1h3m 1h1m 798
zeroconf 433 2063 30829 453 2065 59s 47s 334

zeroconf-nt 75 361 265 99 348 5s 2s 41

Table 4. Caching overview for LP with inexact to exact optimization

Problem |Ton| ∆ DT CH TC t≈ tSolver |≈|

csma2 849 24289 73229 150 11650 560s 556s 449
csma2-sa 630 9111 67657 0 6078 121s 118s 233

csma2-sa-nt 98 1739 186 14 1118 6s 6s 87
dining4 300 45440 240 2175 145 4s 3s 1
firewire3 469 30842 33878 257 1311 68s 66s 425

firewire3-nt 62 664 833 48 166 1s 1s 4
wlan dl0dl6 94 107 275 45 410 1s < 1s 59
wlan0col0 1591 53768 109604 16584 30362 1h17m 1h17m 798
zeroconf 433 2258 35098 515 2063 71s 69s 334

zeroconf-nt 75 379 281 105 333 2s 2s 41

Table 5. Caching overview for GLP (exact solver)

Problem |Ton| ∆ DT CH TC t≈ tSolver |≈|

csma2 849 24297 55499 150 12139 1h2m 1h2m 449
csma2-sa 630 9111 66969 0 6136 555s 544s 233

csma2-sa-nt 98 1739 186 14 1118 18s 17s 87
dining4 300 45440 240 2175 145 7s 6s 1
firewire3 469 30842 34064 257 1311 404s 399s 425

firewire3-nt 62 664 833 48 166 2s 2s 4
wlan dl0dl6 94 107 275 45 410 2s 2s 59
wlan0col0 1591 —time-out—
zeroconf 433 2009 29781 421 2069 207s 200s 334

zeroconf-nt 75 362 269 99 348 5s 4s 41

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 31

Son as class, so every internal transition reaches such class with probability 1. The column DT shows the
number of times the defender t has been able to use the direct transition optimization, i.e., by a transition
t a−→ µt, to match a challenging transition s a−→ µs. Column CH reports the number of cache hits, that is,
the challenging transitions s a−→ µs that have been matched by a transition stored in the transition cache.
The column TC contains the number of challenging transitions for which we have solved the LP(t, a, µs,R)
problem.

The following two columns show the time t≈ spent computing the weak bisimilarity ≈ including the time
tSolver spent by the solvers for verifying all transitions counted in column TC . Since we use a pool of solvers
running in parallel, tSolver is the time spent by the slowest solvers in the pool, i.e., the time elapsing from
the activation of the first solver to the completion of all solvers in the pool. Finally, the last column |≈| gives
the size of the partition, i.e., the number of classes of bisimilar states. This value, decreased by 1, is also the
number of refinements we perform in order to terminate the while loop of Quotient.

By comparing the running times for the SMT, LP, and GLP solvers, we can see that GLP is always the
slowest one while SMT is the best performing among them. This can possibly be explained by the highly
optimized code of Z3 and the remarkable results achieved by the SAT community on satisfaction modulo
theory problems. The use of SMT, however, introduces an overhead in the computation, as highlighted by
the comparision between the colums t≈ and tSolver of Table 3. Such overhead is mainly caused by the need
of translating the LP problem construction into the textual SMT-LIB format [BST10] and then converting
the solution (when the problem is satisfiable) back to numeric values. This induces a considerable usage of
string operations and conversions that are not needed for the other solvers.

It is worthwhile to note that the values relative to the in-loop optimizations, including ∆ and DT , strictly
depend on the order in which we check the pairs of states belonging to the equivalence classes of the current
partition R. In fact, if we have a class C that has to be split in C1, C2, and C3, we may first split out C1,
or C2, or C3. This means, for instance, that if we have to match from a state t ∈ C1 a transition s τ−→ µ
such that µ(C1 ∪ C2) = 1 but µ(C1) < 1, only the latter split permits to increase ∆. Moreover, the cache
hits values are also affected by the fact that when we solve LP(t, a, µs,R), we look for one possible weak
transition t a=⇒c µt such that µs L(R) µt and in case there are several of them, we just store in the cache
the transition computed by the solver. However there is no guarantee that such transition is the same for
all solvers, thus the actual content of the cache can be different. This influences the successive cache hits, in
particular after the split of one class.

It is worthwhile to remark that there are cases where an unlucky order of the partition splits may scale the
transitions to check by a factor 20 that causes a significant increase of both t≈ and tSolver . For this motivation,
we do not fix an order on the pairs of states we check, and we let it depend on the nondeterministic insertion
of states in the classes. In fact, for a fixed challenger state s, we generate the required LP(t, a, µs,R) problems
for each challenging transition s a−→ µs and each defender state t and then we use a pool of solvers running in
parallel to verify them. In case of failure, we add the failing defender t to Cf but the order of such additions is
nondeterministic since it depends on the solver running time, the scheduling of the Java threads interacting
with the solvers, the operating system scheduling of the solvers, and so on.

As the tables show, the in-loop optimizations reduce considerably the number of transitions that have
to be checked by calling the LP or SMT solver, thus making the program faster. In fact, there is a strict
correlation between the number of checked transitions and the time spent by the solver. This can be taken as
a justification for the claim that weak bisimulation minimization does not scale very well to larger automata,
unless the automaton is given as the composition of several smaller automata running in parallel.

In particular, the experiments demonstrate that our implementation uses a reasonable amount of time
on automata whose size is the order of up to 3 · 103 states and transitions. Larger automata are likely to
induce a time-out, as exemplified in Table 6. In these cases, compositional minimization is the suggested
way to overcome this limitation, as we discuss in the next section.

7.3. Compositional Minimization

To show the practical effectiveness of the minimization in a compositional context, which we discussed in
theory in Section 4.2, we consider two case studies that we fail to reduce otherwise, due to their prohibitive
size: the Consensus Protocol with three parties and the Dining Cryptographers with four, eight, and ten
cryptographers. For instance, by applying Definition 2, the four cryptographers case requires 38416 states
and 6380 transitions; eight and ten cryptographers are essentially intractable since they involve around 1.5

32 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

Table 6. Compositional minimization of consensus protocol for three parties

Components |S�| |T�| |[S]≈| |[T]≈| t≈

c3 ‖ p1 114 772 95 643 6s
[c3 ‖ p1]≈ ‖ p2 570 2502 285 1214 1h31m

[[c3 ‖ p1]≈ ‖ p2]≈ ‖ p3 1172 2352 1 1 1h38m

c3 ‖ p1 ‖ p2 ‖ p3 2720 5568 —time-out—

Table 7. Compositional minimization of dining cryptographers: termination

Components |S�| |T�| |[S]≈| |[T]≈| t≈

d1 ‖ d2 33 76 6 14 2s
[d1 ‖ d2]≈ ‖ d3 39 92 6 14 4s

[[d1 ‖ d2]≈ ‖ d3]≈ ‖ d4 39 92 1 1 5s

d1 ‖ d2 ‖ d3 ‖ d4 2165 4540 1 1 5s
d1 ‖ d2 ‖ . . . ‖ d8 1687113 6952248 1 1 13s
d1 ‖ d2 ‖ . . . ‖ d10 42906171 220947474 1 1 18s

and 300 billions states, respectively. We avoid this by constructing the model compositionally, applying weak
bisimulation minimization on the intermediate automata. Moreover, to make this compositional minimization
more effective, we use the hiding operator as soon as possible to restrict the visibility of the actions that are
“private” between two automata.

Each of the Tables 6, 7 and 8 is split in two parts: the top part contains all intermediate steps performed by
the compositional minimization leading to the minimization of the final automaton; in each row, the column
t≈ includes the value of the previous row, thus reporting the total time used thus far. The bottom part
of the table contains the number of states and transitions of the composed automata without intermediate
minimization, and the time for the corresponding compositional minimization.

For the consensus protocol, we can see from the top part of Table 6 that the compositional minimization
allows us to reduce the automaton to a single state and transition, representing the fact that the consensus
is reached with probability 1, whereas the same reduction can not be obtained within the time-out by first
composing the parties and then minimizing the composed automaton. The time required for the former
approach actually depends on the intermediate step, where we reduce the automaton [c3 ‖ p1]≈ ‖ p2, that
returns an automaton that is essentially half of the original one. The main motivation for this situation is
that the intermediate automaton has still a lot of visible actions that can not be hidden since they are needed
to synchronize with p3.

On the contrary, the dining cryptographers protocol is a good example that shows how using the hiding
operator as soon as possible permits to drastically reduce the size of the minimized automaton. In fact, since
the synchronization happens only between cryptographers that are neighbors, such as di and di+1, and such
synchronization has to be secret, it makes sense to hide it just after having composed di and di+1. Consider
the termination of the dining cryptographers protocol with n = 4 cryptographers, as shown in the top part

Table 8. Compositional minimization of dining cryptographers: Anonymity

Components |S�| |T�| |[S]≈| |[T]≈| t≈

i1 = d1 ‖ d2 41 92 20 41 4s
i2 = [i1]≈ ‖ d3 105 247 33 75 33s
i3 = [i2]≈ ‖ d4 180 482 45 107 330s
i4 = [i3]≈ ‖ d5 248 706 57 139 20m

[i4]≈ ‖ d6 178 372 7 6 22m

d1 ‖ d2 ‖ d3 ‖ d4 2242 4708 5 4 39s
d1 ‖ d2 ‖ . . . ‖ d5 12042 31184 6 5 335s
d1 ‖ d2 ‖ . . . ‖ d6 63511 196642 7 6 22m
d1 ‖ d2 ‖ . . . ‖ d7 329784 1189626 8 7 59m
d1 ‖ d2 ‖ . . . ‖ d8 1689417 6961480 9 8 161m

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 33

0

1 2

3 s

1
2

τ
1
2

1
2

τ

1
2

1
2

τ

1
2

succ

Figure 4. The minimized four dining cryptographers (anonymity)

of Table 7: the proposed combination of hiding and compositional minimization permits to reduce any chain
d1 ‖ · · · ‖ dl, where 1 < l < n, to an automaton with 6 states and 14 transitions. Then, for l = n − 1, the
synchronization of d1 and dn−1 with dn closes the circle of cryptographers that once minimized shows that
the protocol terminates with probability 1.

For the anonymity property, the reduction of each chain does not lead to the same size but to an
automaton whose size grows linearly with the number of cryptographers. This is caused by the fact that
we have to keep track of the sequence of agrees announced by the cryptographers and this number clearly
depends on the involved cryptographers. As in the PRISM benchmark, we assume that one cryptographer is
paying and we check a particular outcome of the agreement, that is, we check that the probability of a given
sequence of agrees and disagrees is 1/2n−1. It is immediate to see that the minimized automaton satisfies
this property; see for instance the anonymity of four cryptographers in Figure 4, where the probability of
reaching the state s is 1/23.

It is clear that for the dining cryptographers protocol the compositional minimization approach out-
performs the minimization of the composition and we expect that this extends to all systems where few
components share the same actions.

8. Conclusion

This paper has considered deciding PA weak bisimulation which is known to be polynomial [TH15]. After
a survey of available polynomial algorithms to solve an LP problem, we established an upper bound on the
worst case complexity of the decision problem for general PA. We demonstrated that a small modification
of the LP problem discussed in [TH15] enables taking advantage of the underlying network structure to
improve the practical efficiency of solving the problem.

In addition, we have presented an implementation of the decision algorithm, in the form of a quotienting
algorithm enabling to minimise probabilistic automata with respect to weak probabilistic bisimulation. We
enhanced this algorithm with several heuristics that permit to reduce the running time of the program
considerably, and have shown that minimization can be applied effectively to standard benchmark models.
We have also investigated how compositional minimization techniques can be exploited for models consisting
of several sub-automata running in parallel.

As future work, we plan to improve the efficiency of our heuristics as well as to optimize the code in order to
speed up the response time. Moreover, we plan to investigate heuristics that allow us to optimize the sequence
of the parallel compositions in order to take advantage from the compositional minimization approach, as
done in [CL11, CH10]. Furthermore, the results of this paper allow a number of directions for further research:
the network simplex algorithm specialized for the minimum cost flow problem with additional side constraints
can be seen itself as the foremost next step. In fact, designing a new data structure to be able to deal with
a large number of additional side constraints is not only a very important contribution in theoretical setting
but also it improves the practical efficiency of the decision problem under our consideration.

Acknowledgments This work has been supported by the DFG/NWO Bilateral Research Programme
ROCKS, by the DFG as part of the SFB/TR 14 “Automatic Verification and Analysis of Complex Systems”
(AVACS), by the European Union Seventh Framework Programme under grant agreements 295261 (MEALS)

34 L. M. Ferrer Fioriti, V. Hashemi, H. Hermanns, and A. Turrini

and 318490 (SENSATION), by the Chinese Academy of Sciences Fellowship for International Young Scien-
tists (Grant 2015VTC029), by the National Natural Science Foundation of China (Grants 61472473 and
61550110249), by the CAS/SAFEA International Partnership Program for Creative Research Teams, and
by the CDZ project CAP (GZ 1023).

Part of this work has been done when Andrea Turrini was at Saarland University supported by the
Cluster of Excellence “Multimodal Computing and Interaction” (MMCI), part of the German Excellence
Initiative.

References

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: A meta-algorithm and
applications. Theory of Computing, 8:121–164, 2012.

[AMO93] Ravindra K. Ahuja, Thomas J. Magnanti, and James B. Orlin. Network Flows: Theory, Algorithms, and Applica-
tions. Prentice Hall, 1993.

[Ans99] Kurt M. Anstreicher. Linear programming in O(n3

lnn
L) operations. SIAM J. on Optimization, 9(4):803–812, 1999.

[Bel01] Peter A. Beling. Exact algorithms for linear programming over algebraic extensions. Algorithmica, 31(4):459–478,
2001.

[BF12] Ufuk Bahçeci and Orhan Feyziog̃lu. A network simplex based algorithm for the minimum cost proportional flow
problem with disconnected subnetworks. Optimization Letters, 6:1173–1184, 2012.

[BHH+09] Eckard Böde, Marc Herbstritt, Holger Hermanns, Sven Johr, Thomas Peikenkamp, Reza Pulungan, Jan Rakow,
Ralf Wimmer, and Bernd Becker. Compositional dependability evaluation for STATEMATE. ITSE, 35(2):274–292,
2009.

[BSS89] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over the real numbers;
NP-completeness, recursive functions and universal machines. Bullettin of the American Mathematical Society,
21(1):1–46, 1989.

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB standard: Version 2.0. In SMT, 2010.
[BT97] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific, 1997.
[Cal02] Herminia I. Calvete. Network simplex algorithm for the general equal flow problem. European J. Operational

Research, 150(3):585–600, 2002.
[CGM+96] Ghassan Chehaibar, Hubert Garavel, Laurent Mounier, Nadia Tawbi, and Ferruccio Zulian. Specification and

verification of the PowerScale R© bus arbitration protocol: An industrial experiment with LOTOS. In FORTE,
pages 435–450, 1996.

[CH10] Pepijn Crouzen and Holger Hermanns. Aggregation ordering for massively compositional models. In ACSD, pages
171–180, 2010.

[CHLS09] Nicolas Coste, Holger Hermanns, Etienne Lantreibecq, and Wendelin Serwe. Towards performance prediction of
compositional models in industrial GALS designs. In CAV, volume 5643 of LNCS, pages 204–218, 2009.

[CKMS11] Paul Christiano, Jonathan A. Kelner, Aleksander Ma̧dry, and Daniel Spielman. Electrical flows, laplacian systems,
and faster approximation of maximum flow in undirected graphs. In STOC, pages 273–282, 2011.

[CL11] Pepijn Crouzen and Frédéric Lang. Smart reduction. In FASE, volume 6603 of LNCS, pages 111–126, 2011.
[CS02] Stefano Cattani and Roberto Segala. Decision algorithms for probabilistic bisimulation. In CONCUR, volume

2421 of LNCS, pages 371–385, 2002.

[Den05] Yuxin Deng. Axiomatisations and Types for Probabilistic and Mobile Processes. PhD thesis, École des Mines de
Paris, 2005.

[Der70] Cyrus Derman. Finite State Markovian Decision Processes. Academic Press, Inc., 1970.
[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS, volume 4963 of

LNCS, pages 337–340, 2008.
[EHS+13] Christian Eisentraut, Holger Hermanns, Johann Schuster, Andrea Turrini, and Lijun Zhang. The quest for minimal

quotients for probabilistic automata. In TACAS, volume 7795 of LNCS, pages 16–31, 2013.
[EHZ10a] Christian Eisentraut, Holger Hermanns, and Lijun Zhang. Concurrency and composition in a stochastic world. In

CONCUR, volume 6269 of LNCS, pages 21–39, 2010.
[EHZ10b] Christian Eisentraut, Holger Hermanns, and Lijun Zhang. On probabilistic automata in continuous time. In LICS,

pages 342–351, 2010.
[GHT14] Daniel Gebler, Vahid Hashemi, and Andrea Turrini. Computing behavioral relations for probabilistic concurrent

systems. In Stochastic Model Checking. Rigorous Dependability Analysis Using Model Checking Techniques for
Stochastic Systems, volume 8453 of LNCS, pages 117–155. Springer Berlin Heidelberg, 2014.

[GLP] GNU linear programming kit. http://www.gnu.org/software/glpk/.
[GSL96] Susanne Graf, Bernhard Steffen, and Gerald Lüttgen. Compositional minimisation of finite state systems using

interface specifications. Formal Aspects of Computing, 8(5):607–616, 1996.
[Han91] Hans A. Hansson. Time and Probability in Formal Design of Distributed Systems. PhD thesis, Uppsala University,

1991.
[HHT13] Vahid Hashemi, Holger Hermanns, and Andrea Turrini. On the efficiency of deciding probabilistic automata weak

bisimulation. ECEASST, 66, 2013.
[HK95] Richard V. Helgason and Jeffery L. Kennington. Primal simplex algorithms for minimum cost network flows.

Deciding Probabilistic Automata Weak Bisimulation: Theory and Practice 35

In Network Models, volume 7 of Handbooks in Operations Research and Management Science, chapter 2, pages
85–113. Elsevier, 1995.

[HK00] Holger Hermanns and Joost-Pieter Katoen. Automated compositional Markov chain generation for a plain-old
telephone system. Science of Computer Programming, 36(1):97–127, 2000.

[HN94] Dorit S. Hochbaum and Joseph Seffi Naor. Simple and fast algorithms for linear and integer programs with two
variables per inequality. SIAM J. on Computing, 23(6):1179–1192, 1994.

[JL91] Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement of probabilistic processes. In LICS, pages
266–277, 1991.

[JT80] William B. Jones and Wolfgang Joseph Thron. Continued Fractions: Analytic Theory and Applications. Encyclo-
pedia of Mathematics and its Applications. Addison-Wesley, 1980.

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4(4):373–395,
1984.

[Kha79] Leonid Genrikhovich Khachyan. A polynomial algorithm in linear programming. Soviet Mathematics Doklady,
20(1):191–194, 1979.

[KKZJ07] Joost-Pieter Katoen, Tim Kemna, Ivan S. Zapreev, and David N. Jansen. Bisimulation minimisation mostly speeds
up probabilistic model checking. In TACAS, volume 4424 of LNCS, pages 76–92, 2007.

[KM72] Victor Klee and George J. Minty. How good is the simplex algorithm? In Inequalities, volume III, pages 159–175.
Defense Technical Information Center, 1972.

[KM00] Jean-Pierre Krimm and Laurent Mounier. Compositional state space generation with partial order reductions for
asynchronous communicating systems. In TACAS, volume 1785 of LNCS, pages 266–282, 2000.

[KNP11] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of probabilistic real-time systems.
In CAV, volume 6806 of LNCS, pages 585–591, 2011.

[KS90] Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state processes, and three problems of equivalence.
I&C, 86(1):43–68, 1990.

[LpS] LpSolve mixed integer linear programming solver. http://lpsolve.sourceforge.net.
[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall International, Englewood Cliffs, 1989.
[MSJ11] David R. Morrison, Jason J. Sauppe, and Sheldon H. Jacobson. A network simplex algorithm for the equal flow

problem on a generalized network. INFORMS J. on Computing, 25(1):2–12, 2011.
[MSJ13] David R. Morrison, Jason J. Sauppe, and Sheldon H. Jacobson. An algorithm to solve the proportional network

flow problem. Optimization Letters, 8(3):801–809, 2013.
[PLS00] Anna Philippou, Insup Lee, and Oleg Sokolsky. Weak bisimulation for probabilistic systems. In CONCUR, volume

1877 of LNCS, pages 334–349, 2000.
[PRI] PRISM model checker. http://www.prismmodelchecker.org/.
[PS04] Augusto Parma and Roberto Segala. Axiomatization of trace semantics for stochastic nondeterministic processes.

In QEST, pages 294–303, 2004.
[PT87] Robert Paige and Robert E. Tarjan. Three partition refinement algorithms. SIAM J. on Computing, 16(6):973–989,

1987.
[Pul89] P. Simin Pulat. A decomposition algorithm to determine the maximum flow in a generalized network. Computers

& Operations Research, 16:161–172, 1989.
[Sch03] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of Algorithms and Com-

binatorics. Springer, 2003.
[Seg95] Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, MIT, 1995.
[Seg06] Roberto Segala. Probability and nondeterminism in operational models of concurrency. In CONCUR, volume 4137

of LNCS, pages 64–78, 2006.
[Sha87] Ron Shamir. The efficiency of the simplex method: A survey. Management Science, 33(3):301–334, 1987.
[SL95] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilistic processes. Nordic J. Computing,

2(2):250–273, 1995.
[TH15] Andrea Turrini and Holger Hermanns. Polynomial time decision algorithms for probabilistic automata. I&C,

244:134–171, 2015.
[Var85] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In FOCS, pages 327–338,

1985.
[Vaz04] Vijay V. Vazirani. Approximation Algorithms. Springer, 2004.

